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Does postural stability affect grasping?
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A B S T R A C T

We examined whether challenging upright stance influences the execution of a grasping task.

Participants reached to grasp a small sphere while standing either on a stable surface or on foam. Before

reaching for the sphere, participants exhibited more body sway and greater fluctuations in the centre of

pressure when standing on foam. While reaching for the sphere, the overall body posture changed less

when standing on foam than when standing on the stable surface. The digits’ and wrist’s movements

towards the sphere were no different when standing on foam than when standing on the stable surface.

Presumably, the redundancy in the way movements can be performed is exploited to choose the most

suitable changes in joint angles to achieve the desired movements of the digits under the prevailing

conditions.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

When reaching to grasp an object while standing, people
simultaneously move their digits to appropriate positions on the
object and maintain a stable upright posture. The coordination
between whole-body posture and arm movements has been
studied extensively [1–3]. Humans adjust their posture in
anticipation of the arm movement’s influence on postural stability
[4–7] bearing in mind how to best lift the target object considering
its properties [8,9]. Thus the whole-body posture is certainly
influenced by the arm movement. However, the reverse has hardly
been studied: how constraints imposed by posture influence a
simultaneously executed arm movement, and in particular the
movements of the wrist and fingertips during a reaching-to-grasp
action. The duration of grasping movements is adjusted to postural
demands in a task in which postural stability is evidently critical:
rock climbing [10]. But are reach-to-grasp movements also
affected by postural constraints when the emphasis on posture
is less extreme than in rock climbing?

Grasping movements can be influenced by the target object’s
properties [11,12], its visibility [13], the presence of obstacles [14]
and what the actor intends to do with it [15]. A more fragile object
or one that is partly hidden is grasped more carefully: with a
larger maximal grip aperture [13] and slower movements [12]. In
order to examine whether increased postural demands influence
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reach-to-grasp movements, we let participants perform such
movements while standing either on a stable or an unstable
(foam) surface. Standing on foam is expected to increase body
sway. Consequently, participants may have to execute the
reach-to-grasp movements more carefully, as would be reflected
in more curved wrist paths [16], slower grasping movements
and larger maximal grip apertures that occur earlier in the
movement (reviewed in [17]). Alternatively, adopting the best
posture may be such an integral part of the reach-to-grasp
movement, that the posture is adjusted to the kind of surface
without this affecting the movements of the digits. In that case
movement speed, maximal grip aperture and path curvature
should not depend on the support surface, but the posture should
be adjusted to facilitate the execution of the ‘normal’ reach-to-
grasp movement.

2. Methods

2.1. Participants

Seventeen healthy right-handed volunteers (14 women, 3 men; age: 31 � 9

years; height: 168 � 10 cm; weight: 61 � 14 kg) participated in the study. They all had

normal or corrected-to-normal vision. The experiment is part of a program that has

been approved by the local ethics committee.

2.2. Apparatus

Kinematics of the arm and trunk were recorded at 150 Hz with an Optotrak

motion tracking system (Northern Digital, Canada). Small clusters with three

infrared markers were fixed to the nails of the thumb and index finger. Additional

infrared markers were fixed to the wrist, hip and forehead. A 3D custom-made force

plate was used to measure the centre of pressure (CoP) at 150 Hz. Participants either

stood directly on the force plate (stable surface) or on a piece of foam (foam; length

and width: 40 cm; height: 15 cm with no load, and about 10 cm when compressed

http://dx.doi.org/10.1016/j.gaitpost.2013.01.016
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Fig. 1. Schematic side-view of the set-up showing a participant standing on foam in

front of the tripod. At the left a simplified schematic top-view is shown. Examples of

the paths of one participant’s digits and wrist when reaching to grasp the object

placed at the far distance along the midline are superimposed on this view.
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by the weight of the participant; density: 35 kg/m3). Standing on foam is a common

method to induce postural instability [18–20].

A sphere (4.5 cm diameter, 123 g mass) was placed in a small indentation at the

top of a height-adjustable tripod. The tripod was elevated when the participant was

standing on the foam so that the sphere was always at hip height (Fig. 1). The sphere

and tripod were placed at one of four different positions: two reaching distances

(far, close) and two lateral locations (centre, side). At the far distance the participant

could just reach the sphere with a fully extended arm without leaning forward. At

the close distance the participant considered the arm to be half extended. The

centre locations were along the participant’s midline. The side locations were 20 cm

to the left (Fig. 1).

2.3. Procedure

Participants stood barefoot on the force platform, with their feet parallel and

about 20 cm apart, and with their arms by their side. The sphere and tripod were

either positioned straight in front of the participant or in front and to the left,

depending on the condition. The experimenter gave a verbal signal indicating the

initiation of data collection. After 4 s, another verbal signal indicated that

the participant should start moving his or her right arm to grasp the sphere

between the index finger and thumb, lift the sphere, put it back on the tripod, and

move the arm back to his or her side. Each of the eight conditions (2 surfaces; 4

object positions) was presented in a block of five consecutive trials. Half the

participants started with the four blocks on the stable surface and the other half

started with the four blocks on the foam. The blocks for the different object

positions were presented in random order.

2.4. Data analysis

For calibration, we measured the markers’ positions while the participant held

an additional marker between the thumb and index finger. The position of this

additional marker with respect to the clusters on the digits was used to determine

the coordinates of the fingertips from measured positions of the clusters. If markers

of the clusters were invisible for more than 10 frames when the digits were close to

the sphere, the trial in question was discarded. If this occurred in more than three

trials for the same condition and participant, all data of this participant were

discarded.

We calculated the linear velocity of the wrist by numerical differentiation of the

wrist’s marker position. Grip aperture is the distance between the two fingertips.

Movement onset was determined with a speed threshold of 0.5 cm/s for the wrist

marker. The moment of the grasp was determined using the Multiple Sources of

Information method [21]: the average position of the two digits had to be less than

7 cm from the centre of the object; the wrist’s velocity had to be below 1 cm/s; the

grip aperture had to be between 4.0 and 5.8 cm; and the probability of a moment

being the end of the movement decreased over time.
Movement time was defined as the time between movement onset and the

moment of the grasp. Maximal grip aperture and wrist peak velocity were defined as

the largest values during the reach-to-grasp movement. We also calculated the

relative time to maximal grip aperture and to wrist peak velocity, which was the time

from movement onset to the time at which these maxima occurred, as a percentage

of the movement time. Grip orientation was determined from the projection on the

horizontal plane of the line connecting the fingertips at the moment of the grasp.

The wrist’s net displacement is the euclidean distance between the wrist’s position at

the start and that at the end of the movement. In order to quantify the curvature of

the reaching trajectories, we calculated how much longer the wrist’s path was than

its net displacement (expressed as a percentage of that distance; wrist’s extra path).

We also determined variables that describe the standing posture, such as the

hip’s and head’s net displacements, and the standard deviation of the hip’s angular

position with respect to the foot (sway). From the ground reaction forces we

determined the net displacement and the standard deviation of the position of the

Centre of Pressure (CoP). The sway and standard deviations were determined along

the anteroposterior (AP) and mediolateral (ML) axes.

We divided each trial into three phases: a postural phase (all data collected until

507 ms before the onset of the reach-to-grasp movement), an anticipatory phase

(the last 500 ms before the onset of the reach-to-grasp movement) and a movement

phase (during the reach-to-grasp movement). The average and standard deviation

of each dependent variable was determined for each condition and participant.

Figs. 2 and 3 show the means of these values for each condition, with error bars

showing the within-subject variability. The variability across the subjects’ average

values is also shown (averaged across object positions) for the grasping measures.

Differences between conditions were evaluated using 2 (surfaces) � 2 (reaching

distances) � 2 (lateral locations) repeated measures ANOVAs on the average data

per participant and condition. For the variables obtained during the postural phase

only the factor ‘‘surface’’ was considered.

3. Results

Based on criteria described earlier (see Section 2), all the data of
nine participants and a total of seven trials of the remaining eight
participants were discarded. Another three participants’ data was
not included in the analyses of the variables concerning the wrist,
because the wrist marker was often invisible at critical moments.
Their data was not conspiciously different from that of the other
five participants on other measures. Their wrist marker was not
particularly often invisible in certain conditions. For clarity, we
present all effect sizes in the figures and all statistical evaluation in
Table 1.

3.1. Postural phase

Not surprisingly, the standard deviation of the hip’s angular
position and of the CoP’s position (Fig. 2a–d) was more variable
when standing on foam than when standing on the stable surface.

3.2. Anticipatory phase

Again, the CoP’s position was more variable when standing on
foam (Fig. 2c and d). The ML variability of the CoP’s position was
also influenced by the lateral location and the reaching distance.
Both for the ML and the AP variability of the CoP’s position, there
were interactions between the support surface and the lateral
location: there were smaller differences between the support
surfaces when the object was placed on the left (Fig. 2c and d). The
net AP CoP displacement was larger when standing on foam
(Fig. 2e) and depended on the reaching distance. The net ML CoP
displacement depended on the lateral location and on the reaching
distance. There were significant interactions between support
surface and lateral location for both the net AP and ML CoP
displacements, showing that the effects of the support surface
depend on the lateral location.

3.3. Movement phase

3.3.1. Posture

During the movement phase, the net AP and ML CoP displace-
ments were smaller when standing on foam (Fig. 2e and f), were
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Fig. 2. Influence of support surface and object position on the standard deviation of the hip’s anteroposterior (AP) and mediolateral (ML) position during the postural phase (a,

b), on the standard deviation of the AP and ML CoP position during the postural and anticipatory phase (c, d), on the net AP and ML displacement of the CoP during the

anticipatory and movement phase (e, f), and on the AP and ML hip’s (g, h) and head’s (i, j) net displacement during the movement phase. Positive is to the front (e, g, i) and to

the left (f, h, j). Error bars in this and subsequent figures represent the average standard deviation within the replications of each condition (within-subject variability).
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affected by the reaching distance and the lateral location, and there
were significant interactions between the support surface and the
reaching distance. There was a significant interaction between
support surface and lateral location for the net ML CoP displace-
ment; participants responded less to differences in the object’s
position when standing on foam.

The support surface also influenced the hip’s linear AP and ML
displacements; participants moved their hips more to the right and
to the back when standing on the foam than when standing on the
stable surface (Fig. 2g and h). For the hip’s ML displacement we
found a significant effect of the reaching distance as well as
significant interactions between support surface and lateral
location, between support surface and reaching distance, and a
three-way interaction. The interactions can be interpreted as there
being larger differences between the support surfaces when the
sphere was placed at the far and side locations. For the AP
displacement we found a significant interaction between support
surface and reaching distance, and between lateral location and
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referred to the web version of this article.)
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reaching distance. The former interaction could again arise from a
larger difference between the support surfaces when the object
was placed far away.

The ML displacement of the head was influenced by the support
surface. The head moved less far to the left when participants were
standing on foam (Fig. 2j). Both AP and ML head displacements
were affected by the lateral location and by the reaching distance
(Fig. 2i and j), and there were lateral location by reaching distance
interactions. For the AP head displacement there was also a three-
way interaction.

3.3.2. Grasping

Fig. 3 summarizes the effects on the grasping parameters. A
more clockwise grip orientation was used when the object was
further away or further to the right. There was also a significant
interaction between lateral location and reaching distance.

Movement time was longer when the object was placed further
to the left or further away. There was a significant interaction
between support surface and lateral location, suggesting that the
support surface had a stronger influence when the object was
placed further to the left. There was also a three-way interaction.
Importantly, movement time was only longer when standing on
foam when the object was placed at the closest position.
The lateral location influenced the wrist’s peak velocity, net
displacement and extra path (Fig. 3). Participants moved faster
along a more curved and longer path when the object was on the
left. The net wrist displacement was obviously affected by
the reaching distance. Wrist velocity profiles were very similar
for the two surface conditions (Fig. 4). No significant effects of
surface condition were found for the maximal grip aperture, net
wrist displacement, extra path, or relative time to maximal grip
aperture or to wrist peak velocity. The within-subject variability
was similar for the two support surfaces (error bars in Fig. 3), as
was the variability across subjects for most measures (bars in the
lower left of each panel of Fig. 3). The variability in the extra path
across subjects appears to be smaller when standing on foam.

4. Discussion

Our main finding is that challenging upright stance by altering
the support surface has very little influence on the execution of a
reach-to-grasp movement. Grip aperture and its timing did not
depend on the support surface. Neither did the wrist’s displace-
ment and path, although there was a trend towards straighter
paths when standing on foam. The movement time was longer
when standing on foam for one of the four object positions, but this



Table 1
Statistical evaluation of whether surface, location and distance influence various

parameters during the three phases. F values are given for all significant main

effects and interactions. Location and distance were not considered for the postural

phase. No significant effects were found for the maximal grip aperture, relative time

to maximal grip aperture or relative time to wrist peak velocity (movement phase).

Bold fonts indicate effects involving the support surface. SD: standard deviation.

AP axis ML axis

Postural phase
SD hip’s angular position S F (1,7) = 7.2* F (1,7) = 21.3**

SD CoP S F (1,7) = 35.3*** F (1,7) = 25.9***

Anticipatory phase
SD CoP S F (1,7) = 15.5* F (1,7) = 10.3*

L F (1,7) = 8.8*

D F (1,7) = 13.8*

S � L F (1,7) = 6.3* F (1,7) = 23.5**

CoP displacement S F (1,7) = 12.4*

L F (1,7) = 11.9*

D F (1,7) = 7.1* F (1,7) = 22.4**

S � L F (1,7) = 6.0* F (1,7) = 28.5***

Movement phase
CoP displacement S F (1,7) = 17.4** F (1,7) = 41.2***

L F (1,7) = 14.9** F (1,7) = 59.9***

D F (1,7) = 48.4*** F (1,7) = 64.9***

S � D F (1,7) = 14.2* F (1,7) = 20.3**

S � L F (1,7) = 28.3***

Hip’s displacement S F (1,7) = 20.6** F (1,7) = 12.7*

D F (1,7) = 14.9*

S � L F (1,7) = 6.5*

S � D F (1,7) = 9.5* F (1,7) = 15.7**

L � D F (1,7) = 7.1*

S � L � D F (1,7) = 7.8*

Head’s displacement S F (1,7) = 10.7*

L F (1,7) = 39.4*** F (1,7) = 49.9***

D F (1,7) = 9.4* F (1,7) = 35.1***

L � D F (1,7) = 16.4* F (1,7) = 29.2***

S � L � D F (1,7) = 9.7*

Grip orientation

L F (1,7) = 253.8***

D F (1,7) = 126.5***

L � D F (1,7) = 8.8*

Movement time

L F (1,7) = 24.0**

S � L F (1,7) = 7.1*

S � L � D F (1,7) = 15.0*

Wrist’s peak velocity L F (1,4) = 10.3*

Wrist’s extra path L F (1,4) = 8.3*

Wrist’s displacement L F (1,4) = 123.2***

Wrist’s displacement D F (1,4) = 108.4***

S: surface; L: location; D: distance; �: interaction.
* p < 0.05.
** p < 0.01.
*** p < 0.01.
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was not even the most demanding position. The absence of
increases in movement time and maximal grip aperture, or of
changes to the wrist’s path, when standing on foam suggests that
subjects were confident that they could adjust their posture to
perform the reach-to-grasp movement normally. The similar
variability across the two surfaces, both within and across subjects,
confirms that they could do so. Object position also influenced
grasping in the expected manner [22–24] irrespective of the
support surface.

In contrast to the lack of effects on grasping, posture was altered
when standing on foam. Participants swayed more when standing
on foam during the postural phase and then leaned less towards
the object, probably to ensure that they could cope with the
destabilizing effect of the arm movement [2]. These findings are
consistent with previous reports that standing on foam increases
sway [19,25], and decreases leaning towards a target object [17].
Thus, the stability provided by the support surface is clearly
considered when planning and executing the grasping movement.
The critical factor for successfully performing our grasping
task was to move the digits to suitable positions on the object
[16]. In our study, how the digits moved to such positions did not
change when the whole-body posture was adjusted to cope with
the surface stability. This supports the idea that adopting the best
possible postures to maintain one’s balance during the reach-to-
grasp movement is an integral part of the movement. Posture is
modulated according to the type of surface without this affecting
the movement of the digits. Previous studies have shown that
posture can be modified to maintain a normal execution of arm
movements when reaching in microgravity [26], when additional
loads perturb whole-body reaching movements [27], or just to
improve performance in a pointing task [28]. However, the arm
movement will only be performed normally when there is ample
freedom to modify one’s posture. If one does not have such
freedom, picking a suitable posture will no longer be easy and one
will not always be able to move the arm in the same manner. For
instance, in rock climbing, the duration of grasping movements
does depend on the postural demands [10]. In our study, the
changes in posture did not even affect the duration of the reach-
to-grasp movement. Thus it would appear that moving the digits
to appropriate positions on the object and maintaining a stable
upright posture are extremely well coordinated, with priority
being given to the most important aspect of the action at the
time. In our study, the digits’ movements were presumably
considered to be more important than adopting a particular
posture.

The postural adjustments to the support surface in our reach-
to-grasp task were not just responses to the inertial influence of
extending the arm, because they started well before the grasping
movement started. This supports the notion [29,30] that postural
considerations are fully integrated in planning the upcoming arm
movement. Presumably, the redundancy in the way movements
can be performed is exploited to choose the most suitable changes
in the body’s joint angles to achieve the desired movements of the
digits under the prevailing conditions, so that different postural
configurations are chosen for the same movements of the digits
when standing on different surfaces.
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