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Abstract

A limitation of a simple linear mass-spring model in describing goal directed movements is

that it generates rather slow movements when the parameters are kept within a realistic range.

Does this imply that the control of fast movements cannot be approximated by a linear sys-

tem? In servo-control theory, it has been proposed that an optimal controller should control

movement velocity in addition to position. Instead of explicitly controlling the velocity, we

propose to modify a simple linear mass-spring model. We replaced the damping relative to

the environment (absolute damping) with damping with respect to the velocity of the equili-

brium point (relative damping). This gives the limb a tendency to move as fast as the equili-

brium point. We show that such extremely simple models can generate rapid single-joint

movements. The resulting maximal movement velocities were almost equal to those of the

equilibrium point, which provides a simple mechanism for the control of movement speed.

We further show that peculiar experimental results, such as an ‘N-shaped’ equilibrium trajec-

tory and the difficulties to measure damping in dynamic conditions, may result from fitting a

model with absolute damping where one with relative damping would be more appropriate.

Finally, we show that the model with relative damping can be used to model subtle differences

between multi-joint interceptions. The model with relative damping fits the data much better

than a version of the model with absolute damping. � 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The hypothesis of equilibrium point control of posture and movement (Feldman,
1966) proposes that the commands that the brain produces to generate a limb move-
ment do not encode the forces that are needed, but rather task-related parameters
such as positions or postures of the limb. This feature makes the hypothesis attrac-
tive, for it suggests that the brain does not need to perform complex inverse-dynam-
ical computations to generate a movement. The dynamics of the movement arise
automatically from the interaction of the mechanics of the limb with the set equili-
brium position: the position to which one wants to move. (Detailed descriptions of
the equilibrium point hypothesis and of several equilibrium point models can be
found in Bellomo & Inbar (1997), Gribble, Ostry, Sanguineti, & Laboissi�eere
(1998), and Shadmehr, Mussa-Ivaldi, & Bizzi (1993).)

An important prediction of the hypothesis of equilibrium point control is that the
limb’s final position is insensitive to (transient) perturbations of the limb during the
movement. Indeed, the endpoint of a reach with a monkey’s unseen arm was insen-
sitive to perturbations that it could not feel because the monkey was deafferented
(Bizzi, Accornero, Chapple, & Hogan, 1984). Comparable findings have been re-
ported for perturbed movements of healthy human subjects (when they were asked
not to intervene voluntarily with the perturbation; Gottlieb, 1994; Gribble & Ostry,
2000; Shadmehr et al., 1993). When one moves the hand while sitting in a slowly ro-
tating room, coriolis forces act on the arm during the movement, but not during rest
(before and after the movement). The equilibrium point hypothesis therefore predicts
that unexpected coriolis forces will affect the shape of the movement path but not the
end position. When subjects made reaching movement towards remembered targets
in a dark, rotating room, the path was perturbed. Nevertheless, at the end of the
movement, the final error was negligible as long as subjects did not touch the table
surface. In an experiment in which subjects did touch the table surface, the target was
missed (Lackner & DiZio, 1994). In the latter case the movements may have been
stopped by the table surface before the equilibrium position was reached. This inter-
pretation of the latter experiment is not generally accepted (Feldman, Ostry, Levin,
Gribble, & Mitnitsky, 1998; Lackner & DiZio, 1994), but it explains why the influ-
ence of unexpected coriolis forces can appear to be inconsistent with the equilibrium
point hypothesis. Although the equilibrium hypothesis is an elegant description for
many movements, there are tasks, such as jumping, exerting a specific force, or
adapting to moving in a new kind of force field, for which other kinds of models
for motor control might be more appropriate.

At present there are a number of equilibrium point models, which all have in com-
mon that the moving limb is attracted towards an equilibrium position or posture
(e.g., Barto, Fagg, Sitkoff, & Houk, 1999; Gribble et al., 1998; Latash & Gottlieb,
1991; McIntyre & Bizzi, 1993; Shadmehr et al., 1993; St-Onge, Adamovich, & Feld-
man, 1997). The models differ considerably in how they damp the movement. The
purpose of damping is to stop the movement without endless oscillations around
the equilibrium point. The damping parameters affect the shape of the movement
path and the velocity profile. Strong damping is needed to limit the extent to which
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the limb overshoots the target. However, in order to be able to move rapidly, the
movement should not be too heavily damped.

In the models mentioned above, this conflict between the damping requirements is
solved by making the parameters in the model time- or speed-dependent (apart from
Flash, 1987, who only modelled slow movements). This was done either by pulse-
step control (Barto et al., 1999), by letting stiffness and damping change during
the movement (St-Onge et al., 1997), by introducing non-linear muscle properties
(Gribble et al., 1998), or by introducing a non-monotonic shift of the equilibrium
point (Latash & Gottlieb, 1991). Unfortunately, much of the attractiveness of equi-
librium point models is lost by this, because the brain will have to compute some sort
of complex inverse dynamics after all (DiZio & Lackner, 1995; Gottlieb, 1998).

In the field of servo-control, velocity feedback is well known and commonly ap-
plied to regulate the speed of movement or to stabilise a system against perturba-
tions. The idea to control velocity in addition to position was also proposed for
the control of arm movements (McIntyre & Bizzi, 1993). Schouten, de Vlugt, van
der Helm, and Brouwn (2001) showed that active velocity feedback plays indeed
an important role in the control of posture in the human arm. This solution has been
used to model an optimal controller in studies on motor learning (e.g., Shadmehr &
Mussa-Ivaldi, 1994), but has not had any impact on equilibrium-point models (apart
from McIntyre & Bizzi, 1993). Neither were its advantages discussed by critics of
equilibrium point control. In the present paper we chose to apply velocity-feedback
in the simplest kind of equilibrium-point model, a linear mass-spring model. The ad-
vantages of such a very simple model are the few parameters and the comprehensi-
bility of its behaviour. We will show that such models can benefit greatly from a
modified concept of damping without any extra parameters.

As we argued in the preceding, the damping in the existing equilibrium-point
models usually counteracts the limb’s (or joint’s) velocity, as if the limb moves
through a basin of water or oil. Indeed, muscles do have velocity-dependent proper-
ties (Hill, 1938). However, two underlying concepts of the equilibrium-point hypoth-
esis are that reflexes contribute significantly to the mechanical behaviour of the
motor system, and that reflexes function relative to the desired movement (Feldman,
1966, 1986). Modelling damping relative to the environment (joint) is inconsistent
with this concept. An alternative is a damping term that acts on the hand’s move-
ment with respect to the desired movement velocity (the velocity of the equilibrium
point). We will call the first (conventional) kind absolute damping (in parallel with
the spring element) and the latter relative damping (in series with the spring element)
(Fig. 1). This relative damping gives the limb a tendency to move at the same velocity
as the equilibrium point, and can be understood as damping with respect to the equi-
librium point. Both kinds of damping are the same when the equilibrium point is sta-
tionary, but they differ when the equilibrium point moves.

We will evaluate the performance of models with absolute and relative damping
by modelling the movement of a single-joint human arm (Fig. 1). This kind of move-
ment has frequently been used to test mass-spring models. Besides being used to
model whole movements, linear models can also be applied to a limited range of
a non-linear system (Bennett, Hollerbach, Xu, & Hunter, 1992). As a second test,
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we will therefore model differences between rapid multi-joint interceptive move-
ments. For this test we use Smeets and Brenner’s (1995a) model to compare the effect
of absolute and relative damping in these movements.

2. Models with absolute and with relative damping

We will now derive the equations for the mass-spring models. Let qðtÞ be the equi-
librium position and xðtÞ be the hand’s position (with either metric or angular units).
Their time derivatives, velocity and acceleration, will be represented with one or two
dots over the variable. The differential equation of a linear mass-spring system with
viscous damping and parameters mass (M), damping (B) and stiffness (K) is for ab-
solute damping

M€xxþ B _xxþ Kðx� qÞ ¼ 0; ð1Þ
and for relative damping

M€xxþ Bð _xx� _qqÞ þ Kðx� qÞ ¼ 0: ð2Þ
We are only interested in systems with a stable (i.e., attracting) equilibrium point, so
K > 0; BP 0 (and M > 0). The number of constant parameters is redundant, which
means that each of the equations can be written as a function of just two constant
parameters. This can be achieved by dividing all parameters by M and defining new
constants, b and k (with units seconds�1 and seconds�2, respectively). This yields for
absolute damping

€xxþ b _xxþ kðx� qÞ ¼ 0; ð3Þ
and for relative damping

€xxþ bð _xx� _qqÞ þ kðx� qÞ ¼ 0: ð4Þ
We need the solution for (3) and (4) for an equilibrium that moves at a constant
velocity qðtÞ ¼ q0 þ _qqt. This solution can be found in many textbooks on mathe-
matics or physics. With boundary conditions xð0Þ ¼ x0 and _xxð0Þ ¼ _xx0, the solution
can be written for the underdamped case (i.e., k > b2=4) as

Fig. 1. Illustration of a simple elbow model with the two kinds of damping. Drawn are an upper arm and

a forearm with hand. Each model contains linear stiffness (the spring), linear viscous damping (the dash

pot) and is powered through moving the equilibrium point (the circle with arrow). Various models for

equilibrium point control differ considerably as to where they allocate the spring and damping elements

(McIntyre & Bizzi, 1993): e.g., to the muscles’ non-linear force–velocity properties (Bizzi et al., 1984) or

to the level of reflexes (the stretch reflex, Feldman & Levin, 1995).
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x ¼ _qqt þ q̂q� e�t=s ðq̂q
 

� x0Þ cosðxtÞ þ _qq� _xx0
x

 
þ q̂q� x0

xs

!
sinðxtÞ

!
; ð5aÞ

where

s ¼ 2=b and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1

4
b2

q
;

and for the overdamped case (i.e., k < b2=4) as

x ¼ _qqt þ q̂q� s1
s1 � s2

ðð _qq� _xx0Þs2 þ q̂q� x0Þe�t=s1

þ s1
s1 � s2

ðð _qq� _xx0Þs1 þ q̂q� x0Þe�t=s2 ; ð5bÞ

where

1=s1 ¼ 1
2
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
b2 � k

q
and 1=s2 ¼ 1

2
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
b2 � k

q
:

Note that (5a) and (5b) are valid for both absolute and relative damping. For
absolute damping, q̂q ¼ q0 � ðb=kÞ _qq, whereas for relative damping q̂q ¼ q0. Eq. (5a)
is the equation for a gradually damping out oscillation, and (5b) contains the sum
of two exponential functions that both approach zero (though at different rates).
It may appear strange that (5a) and (5b) for absolute damping contain equilibrium
velocity ( _qq), whereas (1) does not. The reason for this is that q in (1) is not a constant,
but changes at a rate _qq.

3. Modelling a single joint movement

The modelling of a single joint elbow movement was aimed to demonstrate that
relative damping makes it possible to generate fast movements with a linear mass-
spring model. We compared the models with absolute and relative damping for a
range of values of b and k. Apart from this, we modelled ‘typical examples’ of move-
ments, programmed in Matlab�. For these predictions we used reasonable estimates
for b and k. The elbow stiffness has been estimated by Bennett et al. (1992) for rhyth-
mic single-joint elbow movements, and by Gomi and Kawato (1997) for discrete two-
joint (shoulder and elbow) movements. Assuming a lower arm length of 0.4 m, we
estimated the average value of k in the elbow to have been about 20 seconds�2 in
both studies. For the typical examples of movements that we simulated with our
mass-spring model we therefore used k ¼ 20 seconds�2. For these examples we used
a value for b that resulted in about 10% overshoot of the target. This was b ¼
5 seconds�1 for absolute damping, and b ¼ 10 seconds�1 for relative damping. Note
that the first results in an underdamped system, whereas the latter results in a slightly
overdamped system.

We assume the simplest velocity profile of the equilibrium point: the equilibrium
point moves at a constant velocity from the start to the target, where it stays. The
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movement time (MT) is defined as the time between the beginning of the movement
and the moment at which 90% of the distance to the target is covered. This measure
also yields interpretable results for overdamped movements that undershoot the
target. For underdamped movements the overshoot is defined as the maximal elbow
angle beyond the target, expressed as a percentage of target angle.

3.1. Results

Examples of the elbow movements predicted with absolute and relative damping
are shown in Fig. 2B. The movement is much faster with relative damping than with

Fig. 2. Panel A: Fast elbow flexions towards targets at 50� eccentricity with a width of 3�, 6� and 12� (data
from Gottlieb, Corcos, & Agarwal (1989): Fig. 4). Panel B: Examples of predicted single-joint elbow

movements. Equilibrium MT¼ 0.15 seconds; k ¼ 20 seconds�2; absolute b ¼ 5 seconds�1; relative

b ¼ 10 seconds�1. Panels C and D: The predicted relation between the movement of the equilibrium point

and that of the elbow. The values for b and k and target distance are as in panel B. The movements have an

overshoot of about 10%, irrespective of the speed of the equilibrium point. Open and filled dots indicate

the movements of panel B.
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absolute damping. The difference in movement time between the movements pre-
dicted with absolute and with relative damping exists for a large range of the equi-
librium point MTs (Fig. 2C). This is even so when the equilibrium point moves
instantaneously (i.e., as the equilibrium point MT approaches 0). Using the
above-mentioned values for b and k, the fastest movement with absolute damping
is 0.5 seconds, whereas with relative damping it is less than 0.2 seconds (Fig. 2C).
The latter MT is representative of a rapid human movement (Fig. 2A). In the model
with relative damping, the elbow’s movement time is almost the same as that of the
equilibrium point (Fig. 2C).

Fig. 3. Predicted shortest possible movement times (equilibrium point MT approaches 0) for a range of

values of b and k. Left panels: absolute damping; Right panels: relative damping. Upper panels: Continuous

lines are contours of equal movement time. Dashed lines show the range of critical damping; to the left of

these lines are overdamped movements and to the right underdamped movements. Lower panels: Predicted

overshoot for the same conditions. Continuous lines are contours of equal overshoot. Note that the 0%

line in the left panel (absolute damping) is the range of critical damping.
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Fig. 2D shows that for the model with relative damping the peak velocity of the
movement is almost equal to the equilibrium velocity over a large range of equili-
brium velocities. In contrast, for the model with absolute damping the peak velocity
only increases with the equilibrium velocity for slow movements.

In the above example, the difference between the lowest possible movement times
with absolute and with relative damping is considerable (Fig. 2C). The contour plots
in Fig. 3 (upper panels) show that this is the case for a range of values of b and k. For
both kinds of damping, shorter movement times are obtained by increasing the stiff-
ness. However, the effect of increasing the damping differs between the two kinds:
increasing absolute damping increases the movement time, whereas increasing relative
damping decreases the movement time.

The lower panels of Fig. 3 show that the amount of overshoot also depends on b
and k. The overshoot is generally smaller with absolute damping than with relative
damping. Increasing the amount of absolute damping decreases the overshoot and in-
creases the movement time. In contrast, increasing the amount of relative damping
decreases both the overshoot and the movement time, which is of course a favour-
able situation. Note that with absolute damping there is no overshoot in the over-
damped range, whereas with relative damping there is always overshoot. This can
be shown mathematically (Appendix A).

3.2. Discussion

Damping of the elbow from a stationary position has often been measured without
problems in a posture control task (e.g., Flash, 1987). However, attempts to measure
damping of the elbow during active arm movements have not been very successful
(Bennett et al., 1992; Gomi & Kawato, 1997; Gomi, personal communication). One
reason for this could be that such studies used a model with absolute damping. If
the subject does not intend to move, the equilibrium point will remain stationary,
so there is no difference between absolute and relative damping. During a movement,
however, fitting a model with absolute damping to a system with mostly relative dam-
ping will result in a strong velocity dependency of the damping parameter. Indeed,
Bennett et al. (1992) found a velocity dependency of the absolute damping parameter.

The model with relative damping is not only a simple way to generate fast move-
ments, it can also help to interpret some peculiar experimental findings. Latash and
Gottlieb (1991) reconstructed the time-course of the equilibrium-position by fitting a
linear model without damping to perturbed elbow movements. For fast movements,
they found that the equilibrium point moves forth, back and forth again, two times
changing its direction (they termed it an ‘N-shaped virtual trajectory’). Our proposal
of relative damping gives an alternative interpretation for Latash and Gottlieb’s
(1991) results. In our view, the ‘N’-shape of the equilibrium trajectory originates
from fitting an inappropriate model. If one fits a model without damping to a system
with non-negligible damping, the damping forces will be attributed to shifts in the
equilibrium point’s position. An example is given in Fig. 4. We generated a move-
ment with our model with relative damping ðb ¼ 10 seconds�1Þ. Subsequently, we
determined at each time the equilibrium position assuming that b ¼ 0 (following
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the method of Latash & Gottlieb, 1991). Fig. 4 shows that our model with relative
damping predicts that the method of Latash and Gottlieb (1991) yields an ‘N-shaped
virtual trajectory’ in rapid movements.

The results of Bellomo and Inbar (1997) can be interpreted as evidence that the
damping in elbow movements is indeed relative damping. They used a ‘k-equilibrium
model’ (Feldman, 1986), which is a non-linear model in which the threshold activity
of the muscles is controlled. This threshold depends not only on the equilibrium po-
sition, but also on the movement velocity (absolute damping). Bellomo and Inbar
(1997) used EMG activity as a measure of muscle activity. They measured how
the model parameters changed during elbow movement with different loads. For
an equilibrium point that moves with a continuous velocity to the target, the ‘abso-
lute damping’ depended on the difference between the hand’s velocity and the virtual
velocity. This is the same as a constant relative damping. This shows that relative
damping not only improves a simple linear model, but also improves a non-linear
model such as the lambda model.

In one aspect, the final slowing down phase, the mass-spring movements do not
look very realistic (compare Fig. 2A and B). There is a rather large overshoot of
the target followed by a slow return, irrespective of the kind of damping. We could
undoubtedly improve this for instance by introducing a smoother movement of the
equilibrium point. However, we will not do so because a simple model is valuable for
providing insight into the general pattern of behaviour, rather than for giving an
exact fit of the observed behaviour.

4. Modelling the effect of moving targets in a fast interception

A linear mass-spring model can also be used to model small variations in a non-
linear system. To investigate whether relative damping also improves the model’s

Fig. 4. An N-shaped ‘virtual trajectory’ (dashed line) is found when applying the method of Latash and

Gottlieb (1991) to a movement generated with our model (dotted line), using a ramp-shaped equilibrium

trajectory (solid line). Equilibrium MT¼ 0.15 seconds; k ¼ 20 seconds�2; relative b ¼ 10 seconds�1.
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performance in such applications, we used the data from experiment 3 in Smeets and
Brenner (1995a). Subjects had to hit static and moving spiders on a screen in front of
them (Fig. 5A) in a rapid, unrestrained 3-D movement. The mass-spring model is
used to describe the control of the hand’s movements in the same component that
the targets moved in (from left to right).

Kinematic data of the 3-D hand movements were averaged over subjects for each
condition. These averages were calculated (in the left–right direction) over points in
the paths that were at the same distance from the screen. To obtain the responses to
the targets’ positions and velocities, the average path towards the stationary target at
0 cm was subtracted from each path (Fig. 5B). The movements started on average 38
cm from the screen. The movement component towards the screen approximated a
constant acceleration. Consequently, at half the MT the hand had moved one-quar-
ter of the distance towards the hitting screen, so that it was 28.5 cm from the screen.

Fig. 5. Panel A: Lateral (left–right) positions of stationary (solid lines) and moving (dashed lines) targets

that were presented in random order (Smeets & Brenner, 1995a). The stationary ones appeared at )3, 0 or
3 cm with respect to the hand’s current lateral position. The moving ones appeared at )8 cm, moving at a
velocity of 6, 9, 12, 15 or 18 cm/seconds to the right. Time¼ 0 is when the hand started to move. The start

and end of each line indicate the average times at which the target appeared and at which the screen was

reached. Panel B: Experimental paths, averaged over 12 subjects. The path towards the target at 0 cm was

subtracted from the others (data from Smeets & Brenner, 1995a). Numbers near the dashed lines indicate

the target’s velocity (cm/seconds). Panels C and D: Model fits of the lateral movement component. The

forward component was modelled as a continuous acceleration.
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In all conditions, a position 28.5 cm from the screen was reached (on average) within
5 ms of half of the MT.

4.1. The models

We used the model as a linear approximation of the non-linear behaviour of the
arm. To do so, we only modelled the differences between the responses to the targets,
i.e., the differences in the lateral (left–right) component of the hand’s movements.
Note that the lateral component was much smaller than the forward component
(Fig. 5B), but that it is the only direction in which the positions and velocities of
the spiders differed (Fig. 5A). We chose the stationary 0-cm target as a reference, that
is, we only modelled the differences with respect to the paths made in this condition.
The modelled paths are therefore directly comparable to the experimental ones when
displayed as in Fig. 5B.

Fast interceptive movements are not ballistic, which means that information
about the target continuously influences the hand’s movement (Prablanc, P�eelisson,
& Goodale, 1986; Smeets & Brenner, 1995b). Fig. 5B shows that moving and static
spiders were not hit in the same way: the trajectories towards the 6 cm/seconds tar-
gets and the 18 cm/seconds targets are less curved than the paths towards stationary
spiders. A possible explanation for this is that the subjects did not use the spider’s
velocity to predict where it will be hit (Smeets & Brenner, 1995a), but instead used an
expected velocity (this may be the preceding spider’s velocity: de Lussanet, Smeets, &
Brenner, 2001). Smeets and Brenner (1995a) proposed that the subjects continuously
predicted how far ahead of the spider’s current position they would hit it.

Let s, x and q be the lateral positions of, respectively, the spider, the hand and the
equilibrium point. With a stationary spider, we assume that the equilibrium position
is simply the spider’s position: q ¼ s. The position of the equilibrium point (q) at a
given instant is the sum of the spider’s actual position (s) and the subject’s prediction
for how much further the spider will move (in the remainder of the movement time).
The spider’s position changes at its actual velocity (_ss), whereas the prediction is
made with the expected velocity (v), so that q in (3), (4), and (5a), (5b) is substituted
with:

q ¼ s�RT þ _ssðRT þ tÞ þ vðMT � tÞ; ð6Þ

where the time t ¼ 0 is when the hand starts to move, and t ¼ RT (reaction time) is
the time between when the spider appears and when the hand starts to move.

The model with absolute damping is given in (3) with q according to (6). In the
model with relative damping (4), not only (6) is substituted but also the velocity of
the equilibrium point ( _qq ¼ _ss� v). This is the velocity at which the subject’s prediction
of where the target will be hit (the equilibrium point), moves. This means that the
target’s final position is continuously updated on the basis of the expected velocity,
and relative damping drives the hand in the direction of the difference between the
target’s velocity and the expected velocity. In de Lussanet et al. (2001), we presented
evidence that this expected velocity is equal to the preceding target’s velocity (which
on average is the average velocity of all the targets in a randomised experiment).
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For modelling the differences in the lateral component of the interceptions, the
speed of the target dictates the movement of the equilibrium point. Stationary spiders
appeared at their position well before the hand started to move, so the equilibrium
point was stationary during the hand’s movement. This implies that the models with
absolute and relative damping do not yield different results for stationary targets.

4.2. Fitting procedure

The root of the mean squared difference (RMS error) between the model and the
measured paths was minimised. We first fitted the model to the two eccentric station-
ary targets (thick paths in Fig. 5B) to obtain b and k. Therefore the RMS error was
minimised at 28.5 and 0 cm from the screen (corresponding with half and the end
of the MT). This resulted in b ¼ 7:96 seconds�1 and k ¼ 61:0 seconds�2 (RMS
error¼ 0.18 cm). These values of b and k were used to fit the expected velocity v
in each model to the conditions with moving targets.

4.3. Results and discussion

Fig. 5C and D show the results. The paths for the stationary targets are the same
in both panels and show the best fit of b and k to the conditions with stationary tar-
gets (see fitting procedure). For v we expect a value that is close to the average ve-
locity of the (preceding) spiders, which was 10.125 cm/seconds (in the experiment
there were additional conditions that we do not treat here). The best fit for the model
with absolute damping was obtained with v ¼ 10:6 cm/seconds (RMS error¼ 0.49
cm). 1 The best fit for the model with relative damping was v ¼ 9:5 cm=seconds
(RMS error¼ 0.19 cm). So both models yielded a value for v that was close to the
expected value. The model with relative damping describes the data better than does
the model with absolute damping. This can be seen when comparing the dashed lines
(for the moving targets) in Fig. 5C and D with those in panel B. Moreover, the model
with relative damping describes the paths towards the moving targets as well as those
to the static targets (the RMS errors are almost the same). However, for the static
conditions, two parameters were fitted, whereas just one parameter was fitted for
the moving ones. This means that the model with relative damping describes the
moving target conditions very well, compared to the fit of the static conditions.

5. General discussion

With a realistic value of stiffness and damping, a simple linear mass-spring model
with absolute damping generates rather slow movements (Fig. 3). To obtain rapid

1 The model with absolute damping fit the same data worse than it did in Smeets and Brenner (1995a).

The reason for this is that differences in reaction time and movement between the conditions (Fig. 5A)

were ignored when making the original fit. The good result of that original fit is therefore probably a

coincidence.
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movements, one has to assume that stiffness is higher than what is measured exper-
imentally (Bennett et al., 1992; Gomi & Kawato, 1997). Previously, it has been
proposed to ‘solve’ this problem by introducing non-linearities (such as a non-mono-
tonic movement of the equilibrium-point) and extra parameters in the model. Apart
from not being very elegant, such solutions suggest that the human motor system be-
haves non-linearly. An argument against such non-linearity is that people can easily
scale-up their characteristic movement trajectories without changing the shape of the
movements (Merton, 1972). This would be difficult with a non-linear motor control
system. A solution from servo-control is to control the desired velocity of the move-
ment in addition to the desired position (or trajectory). For human movements, this
solution has been used for models with an optimal controller in the learning of goal-
directed arm movements (Shadmehr & Mussa-Ivaldi, 1994), for interception in
a model using a dynamical systems approach (Zaal, Bootsma, & van Wieringen,
1999) and for equilibrium point models of goal-directed movements (McIntyre &
Bizzi, 1993). We showed that a similar performance can be obtained by a mass-
spring model with relative damping.

The stiffness value that we obtained for the fast interception (Section 4:
k ¼ 49:6 seconds�2) was higher than the one that we used to model the single joint
movement (Section 3: k ¼ 20 seconds�2). The latter value was based on the literature
(Bennett et al., 1992; Gomi & Kawato, 1997). Does that mean that the k obtained by
fitting the model to interceptive movements is unrealistic? No, because the first value
is the endpoint stiffness of a complete arm whereas the latter is the isolated elbow
stiffness. Gomi and Kawato (1997) also measured the endpoint stiffness for an
arm flexion towards the shoulder, opposite in direction from the hitting movement
in Smeets and Brenner’s experiment. From movement start to peak velocity, the lat-
eral endpoint stiffness measured by Gomi and Kawato was fairly constant and re-
mained within a range of 40–60 N/m (two subjects). Assuming similar stiffness
values when moving in the opposite direction and assuming an effective mass of
about 1 kg, this range of stiffness is equal to k ¼ 40–60 seconds�2. Thus, the value
that we estimated for k for the fast interception is within a realistic range.

The linear mass-spring model is a course simplification for a system that consists
of both muscles and reflexes. As we mentioned in Section 1, the muscles have (non-
linear) absolute damping properties that we neglected. In addition, we neglected the
delays of the reflex system. However, by keeping the model simple, we gained much
insight into its behaviour. Moreover, the muscle reflex-system has such a complex
structure that merely introducing reflex delays and a realistic muscle force–velocity
relationship would not make the model appreciably more biologically realistic. On
the other hand, a truly realistic model would be almost as incomprehensible as the
muscle-reflex system itself.

Single joint movements have been modelled very often, because in such move-
ments there are no dynamic interactive forces between the limb segments. The pre-
sent paper gives evidence that relative damping provides a very simple explanation
that can account for results that previously appeared to indicate that motor control
is complex. It would be interesting and useful to reanalyse earlier data by Bellomo
and Inbar (1997), Bennett et al. (1992), Gomi and Kawato (1997) and Latash and
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Gottlieb (1991) using models with relative damping. Given the present results, this
may result in reliable estimates of the damping during the movement and may free
Latash’s version of the lambda model from the N-shaped equilibrium trajectory.

From the viewpoint of optimal control it does make sense that the muscle-reflex
system forms a unit that behaves as a singular linear system. For example, the non-
linear stretch reflex and non-linear stiffness were shown to provide a more linear
muscle stiffness (Nichols & Houck, 1976). In addition, muscles without reflexes only
behave spring-like for a limited duration, whereas reflexes act after a brief delay. The
combination of the two time scales of muscle and reflex properties could potentially
result in approximately linear behaviour over both time scales. The good results of
the simple model with relative damping to predict the effects of differences in target
velocity provides support for this view.
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Appendix A. Relative damping always gives overshoot

The model with relative damping for a single joint movement predicts that the tar-
get will be overshot even in the overdamped case (Fig. 3). Here we show mathemat-
ically that this is the case for all equilibrium MTs. We will regard positive damping
and stiffness parameters.

The model is linear, so the target’s distance does not change the shape of the tra-
jectory (it only scales the trajectory). For simplicity we set the target distance at 1.
Let the equilibrium MT be tq, so while the equilibrium point moves, _qq ¼ 1=tq. The
initial values are x0 ¼ _xx0 ¼ q0 ¼ 0. From (5b) it follows that at time tq, when the equi-
librium point reaches the target, the hand’s position and velocity are

xðtqÞ ¼ 1� s1s2
s1 � s2

1

tq
ðe�tq=s1 � e�tq=s2Þ; ðA:1Þ

_xxðtqÞ ¼
1

tq
þ 1

s1 � s2

1

tq
ðs2e�tq=s1 � s1e

�tq=s2Þ: ðA:2Þ

By definition 0 < s1 < s2 < 1 when b > 0. This means that 0 < xðtqÞ < 1, in other
words, the hand never reaches the target before the equilibrium point does.

After the equilibrium point reaches the target, it remains there. The hand will then
either slowly approach the target (but never reach it), or the hand will shoot past the
target and return slowly. If there is always overshoot, the time ttarget – when the hand
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reaches the target – must be within the range ðtq < ttarget < 1Þ, regardless the values
of b, k and tq. After time tq, the equilibrium point q ¼ 1 and _qq ¼ 0, so

xðttargetÞ ¼ q ¼ 1; ðA:3Þ
so (5b) becomes

1� s1
s1 � s2

ð� _xxqs2 þ 1� xqÞe�ðttarget�tqÞ=s1

þ s2
s1 � s2

ð� _xxqs1 þ 1� xqÞe�ðttarget�tqÞ=s2 ¼ 1; ðA:4Þ

which can be rewritten as

exp ðttarget
�

� tqÞ
1

s1

�
� 1

s2

��
¼ s1

s2

_xxqs2 � 1þ xq
_xxqs1 � 1þ xq

: ðA:5Þ

When we substitute xq ¼ xðtqÞ and _xxq ¼ _xxðtqÞ as given in (A.1) and (A.2), we get

exp ðttarget
�

� tqÞ
1

s1

�
� 1

s2

��
¼ 1� e�tq=s1

1� e�tq=s2
; ðA:6Þ

so

ttarget ¼ tq þ
lnð1� e�tq=s1Þ � lnð1� e�tq=s2Þ

1=s1 � 1=s2
: ðA:7Þ

From (A.7) we can calculate ttarget for positive damping ðb > 0Þ to range from

ttarget ¼
lnðs1=s2Þ

1=s1 � 1=s2

for limtq#0, to ttarget ¼ tq for limtq!1. This means that for any 0 < s1 < s2 < 1, there
is a time tq < ttarget < 1 when xðttargetÞ ¼ 0. Thus there will be overshoot for all
movements with positive relative damping.
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