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a b s t r a c t

Flashes presented around the time of a saccade are often mislocalized. The precise pattern of mislocaliza-
tion is influenced by many factors. Here we study one such factor: the predictability of the saccade tar-
get’s location. The experiment examines two conditions. In the first the subject makes the same
horizontal rightward saccade to the same target location over and over again. In the second the subject
makes saccades to a target that is jumping in unpredictable radial directions. A dot is flashed in the vicin-
ity of the saccade target near the time of saccade onset. Subjects are asked to localize the flash by touch-
ing its location on the screen. Although various saccade parameters differed, the errors that subjects
made were very similar in both conditions. We conclude that the pattern of mislocalization does not
depend on the predictability of the location of the saccade target.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

We make more than hundred thousand saccadic eye move-
ments every day. Across each saccade both the eye orientation
and the retinal image change, so the brain needs to somehow inte-
grate these changes into reliable estimates of relevant objects’
locations. This integration is prone to errors when brief stimuli
are presented around the time of a saccade (e.g. Bischof & Kramer,
1968; Lappe, Awater, & Krekelberg, 2000; Maij, Brenner, & Smeets,
2009; Matin & Pearce, 1965; Pola, 2004; Ross, Morrone, & Burr,
1997; Schlag & Schlag-Rey, 2002). Such peri-saccadic mislocaliza-
tion has been studied intensively and it has been shown to depend
on many factors. For instance, the presence of visual references
(Dassonville, Schlag, & Schlag-Rey, 1995; Honda, 1993; Lappe
et al., 2000; Maij, Brenner, Chul-Li, Cornelissen, & Smeets, 2010),
stimulus luminance (Georg, Hamker, & Lappe, 2008), stimulus con-
trast (Michels & Lappe, 2004), auditory information about the time
of the flash (Maij et al., 2009) and saccade speed (Ostendorf,
Fischer, Finke, & Ploner, 2007) have all been shown to modify the
pattern of peri-saccadic mislocalization.

In daily life, we make saccades in various directions in rapid
succession, in response to the content of the scene and in accor-
dance with our intentions (Yarbus, 1967). In contrast, most studies
of peri-saccadic mislocalization constrain the saccades in order to
reduce the variability between trials (e.g. Lappe et al., 2000;
Morrone, Ross, & Burr, 2005). In those studies, subjects are in-
structed to fixate a dot at a fixed position on the screen. When
ll rights reserved.
the dot disappears the subject has to make a horizontal saccade to-
wards a second dot, the saccade target, which is always at the same
place.

We examine whether subjects localize peri-saccadic flashes dif-
ferently when the saccade target is always at the same position on
the screen than when the position of the saccade target is unpre-
dictable. A reason for expecting a difference is that when the sub-
ject is following a dot that is jumping in random directions on the
screen, the goals of the saccades are not known until the target
jumps. When the saccade target is always at the same position
on the screen, the location of the saccade target and the initial ori-
entation of the eyes are known well in advance. Several saccade
parameters (such as latency and amplitude) are related to the pre-
dictability of the location of the saccade target (de Grave & Bruno,
2010). Moreover, Xu-Wilson, Zee, and Shadmehr (2009) showed
that peak velocity of saccades to targets that contain information
is higher than that to targets without information. Peak velocity
has been shown to be positively correlated with the compression
of the perceived flash locations towards the saccade target
(Ostendorf et al., 2007). As predictable targets contain less mean-
ingful information than unpredictable targets, we predict that
unpredictable targets will give rise to faster saccades with more
compression.
2. Methods

2.1. Design and subjects

We conducted the experiment in a normally illuminated room.
Five subjects volunteered to participate in the experiment
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(including one of the authors). All subjects had normal or cor-
rected-to-normal vision. The study is part of a research program
that was approved by the ethics committee of the Faculty of Hu-
man Movement Sciences.

2.2. Experimental setup

Visual stimuli were presented on a touch screen (EloTouch CRT
1900, 1024 � 768 pixels, 36 � 27 cm, subtending a visual angle of
40� � 30�, 85 Hz) using the Psychophysics Toolbox in MATLAB
(Brainard, 1997). The visual stimuli were viewed from a distance
of 50 cm. Eye movements were registered using an Eyelink II (SR
Research Ltd., Mississauga, Ontario, Canada) at a sample frequency
of 500 Hz using the Eyelink toolbox (Cornelissen, Peters, & Palmer,
2002).

2.3. Stimuli and conditions

We used two conditions that differed in the saccades that the
subjects needed to make (Fig. 1). One condition contained saccades
in random directions and the other condition contained only right-
ward horizontal saccades. In the random direction condition, sub-
jects were asked to follow a 0.5� diameter jumping white dot
(108 cd/m2) with their eyes. The dot was presented at a new posi-
tion every 400 ms. It jumped in steps of 11� across a gray screen
(100 cd/m2), and remained on the screen until the next dot ap-
peared. The white dot jumped in series of 3, 4 or 5 steps (random
with equal probabilities). Each jump displaced the dot in one of
eight radial direction, chosen at random from the two horizontal,
two vertical and four diagonal directions, but never choosing a
direction that would bring the dot within 4.7� (115 pixels) from
the edge of the screen. In the rightward condition there were only
two possible positions of the white dot; the saccade start and the
target location were respectively 5.5� to the left and right of the
screen centre. The white dot at the saccade start location was pre-
sented for 400 ms, before jumping to the saccade target location.

Shortly after the white dot was presented at its final position, a
0.5� diameter black dot (7 cd/m2) was flashed (one frame) at one of
5 different locations with respect to the displacement between the
(last) two positions of the white dot. The flashes were presented at
25%, 50%, 75%, 125% and 150% of the (last) displacement of the
white dot (with 0% being its location before the displacement
and 100% its location after the displacement). The saccade target
was removed one frame before the flash. The trial ended when
the subject indicated where he or she had perceived the flash by
touching the screen. The next trial started after a random delay.
Each subject took part in several sessions, and the two conditions
were presented in different orders in different sessions.
Fig. 1. Schematic overview of target positions for a single trial of each condition. Left pa
near the saccade target shortly after the white dot’s last jump. Right panel: the white dot
after the second white dot appeared on the screen. All positions are shown in this over
2.4. Calibration

Before each session the subject was asked to calibrate the touch
screen using the standard nine-point calibration provided by Elo-
Touch, and to calibrate the Eyelink II using the standard nine-point
calibration procedure of the Eyelink II.

To synchronize the eye movement recordings with the images
presented on the screen, we always presented a second flash at
the same time as the flash that the subject had to localize. The sec-
ond flash was only used to synchronize the eye movement record-
ings with the images presented on the screen. It was presented in
the lower right corner of the screen and was invisible to the sub-
ject. We measured the moment of this second flash with a
photo-diode that was attached to the screen. The photo-diode sent
a signal to the parallel port of the Eyelink computer. This signal
was registered in the data file on the Eyelink computer. The tempo-
ral relationship between such a record and the record of the eye
orientation at the moment of the flash was previously determined
by using the photo-diode to drive an infrared lamp that ‘blinded’
one of the Eyelink cameras. Because the photo-diode was placed
in the lower right corner, and the flash was presented at different
locations on the screen, the real timing was only known to within a
few milliseconds (we did not correct for the temporal effects of
variation in the position of the flash on the screen). For trials in
which no signal was sent from the photo-diode to the parallel port
(24% of all trials; due to technical failure), we used the average de-
lay between the record of the command to show the flash (that was
also recorded on the Eyelink computer) and the record of the signal
from the photo-diode (when such a signal was recorded) to esti-
mate when the flash had occurred. On average, this delay was
27 ms, with a standard deviation of 3.5 ms. The latter is about what
one would expect for variability within one frame of the image.
Thus the accuracy of the timing was only slightly poorer on trials
in which there was no signal from the photo-diode.

To estimate the errors that arise from using pointing as a re-
sponse we also tested the accuracy of touching the location of a
dot that remains present on the screen. The dot appeared at ran-
dom positions and had the same size and color as the flash in the
experiment. The average lateral and vertical standard deviation
when localizing such dots is 0.25�.

2.5. Procedure

Because the mislocalization of the flash only occurs around the
moment of the saccade, we wanted to present as many flashes as
possible at about that time. We used the saccadic latencies on pre-
vious trials in the same direction to predict the saccade onset (Maij
et al., 2009). We used the average saccadic latency on the ten
nel: white dots jumped in random directions on the screen. A black dot was flashed
jumped rightwards between two fixed locations. The black dot was flashed shortly

view, but there was never more than one target on the screen.
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previous trials in which the saccades were in the same direction as
that of the trial in question for the prediction. We used Dafoe,
Armstrong, and Munoz (2007) average latencies for each direction
at the beginning of each session. At the predicted saccadic latency
the black dot was flashed on the screen for one frame at 25%, 50%,
75%, 125% or 150% of the last displacement of the white dot.

The subjects were asked to touch the screen as accurately as
possible at the location at which they saw the black flash. If no
new white dots appeared and the subject had not seen a black flash
(for instance because he or she blinked when the flash was pre-
sented), the subject could indicate having missed the target by
touching the screen in one of the corners. The trial ended when
the subject touched the screen. In total there were 300 trials in
each block and two blocks in each session (one for each condition).
Subjects performed at least four sessions. If, after several sessions,
there were too few successful trials for one of the conditions or
directions, additional sessions were performed for that condition
(the definition of a successful trial will be explained in the next
section).
2.6. Data analysis

We used the Eyelink’s gaze position data for the right eye to
determine characteristics of the saccades, and the first location at
which the finger touched the screen as the perceived position.
For an eye movement to be considered to be a saccade, its tangen-
tial velocity had to exceed 35�/s for at least two consecutive sam-
ples (4 ms). The saccade end was at the first sample at which the
tangential velocity was below 10�/s. We discarded trials in which
there was no saccade near the time of the flash (wrong flash timing;
see Fig. 3). We also discarded trials if the length of the saccade was
less than 75% of the (last) displacement of the white dot (wrong
amplitude) or if the direction of the saccade was not within
±22.5� of the radial direction of the (last) displacement of the white
dot (wrong direction). Furthermore, we discarded trials in which
the touched location differed by more than 270 pixels (11�; a
whole displacement of the white dot) in the direction of the sac-
cade, or 135 pixels (5.5�) perpendicular to the direction of the sac-
cade, from the actual location of the flash (wrong localization).
Doing so removes trials in which the subject touched one of the
corners.

We only analyzed the localization in the direction in which the
saccade target jumped: the component of the vector between the
A B

Fig. 2. Data analysis (data of one naïve subject for the rightward saccade condition). Gray
flash location (dashed lines), the perceived positions for individual flashes (dots) were
mislocalization curve for one flash location at a certain time of the flash (at �60 ms in th
best linear fit. We define compression as 1 – arctan(h), so that a value of 1 is total compres
fit at the saccade target location. (C) Compression for each time sample. (D) Shift for ea
touched location and the true location of the flash in the direction
of the (last) displacement of the dot. We plotted the true and per-
ceived positions of the flash, relative to the (last) displacement of
the white dot, as a function of the different moments of the flash,
relative to saccade onset. To draw a smooth curve through the data
(for each condition and flash position) we averaged the perceived
positions for each subject and condition with weights based on a
(moving) Gaussian window (r = 7 ms). The smooth curve was
drawn as long as there were at least 5 data points within 7 ms of
the peak of the Gaussian. We will refer to this curve as the mislo-
calization curve.

2.7. Compression and shift

To describe the mislocalization in terms of compression and
shift, we took the values of individual subjects’ mislocalization
curves at a single time sample (a horizontal position in Fig. 2A),
plotted them as a function of flash location, and fit a line through
these values (Fig. 2B). Compression was defined as 1 – arctan(h),
where h is the angle between the fitted line and a horizontal line.
In this definition, a compression of 0 means no compression, in
contrast with other definitions of compression (e.g. Lappe et al.,
2000). Shift was defined as the value of the fitted line for a (hypo-
thetical) flash at the saccade target (flash position = 11�). Compres-
sion and shift were calculated separately for each time sample
(Fig. 2C and D).

2.8. Maximum compression

To relate the compression to various other parameters we
determined the maximal compression for each subject. The differ-
ence in maximum compression between the random direction sac-
cade condition and the rightward saccade condition was tested
with a paired t-test. We also determined the correlation of several
saccadic parameters (amplitude, direction, peak velocity, standard
deviation in peak velocity, latency and standard deviation in la-
tency) with the maximum compression.

3. Results

On average, subjects did 4856 ± 729 trials for the random direc-
tion condition, and 2474 ± 783 trials for the rightward condition
(mean ± standard error of the mean). The larger number for the
C

D

bar: average saccade duration. Solid grey line: saccade target location. (A) For each
smoothed to obtain mislocalization curves. (B) Each dot shows the value of the

e top panel and 20 ms in the lower panel). Dashed line: veridical percept. Black line:
sion and a value of 0 is no compression. Shift is defined as the value of the best linear
ch time sample.
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former was obtained by running additional sessions with only the
random direction condition. In Fig. 3 we show the proportion of
successful trials (the trials that were used in the further analysis)
and the reasons why trials had to be discarded.

The saccadic latencies were significantly more variable for the
saccades of the rightward condition than for those of the random
condition (averaged across all directions; Fig. 4B; p < 0.01). The
average saccade amplitude did not differ significantly between
the two conditions (Fig. 4C). The saccade duration was significantly
larger for the random direction condition (Fig. 4D; p < 0.05). As ex-
pected, the peak velocity of the saccades in the random direction
condition was significantly larger than for the rightward saccade
condition (Fig. 4E; p < 0.05) and the peak velocity was also signifi-
cantly more variable (Fig. 4F; p < 0.05).

We also compared the saccade parameters of the rightward sac-
cades of the random direction condition with those of the right-
ward condition. The average saccadic latency was significantly
larger and the variability in latency was significantly smaller for
the rightward saccades in the random direction condition than
for those of the condition with only rightward saccades (Fig. 4A;
p < 0.05 and p < 0.01, respectively). The peak velocity of the right-
ward saccades of the random direction condition was significantly
larger than that of the condition with only rightward saccades
(Fig. 4E, p < 0.01). In general, the rightward saccades were similar
to all other saccades in the random condition.

Average mislocalization, compression and shift curves are
shown in Fig. 5. The curves look very similar for both conditions.
However, in particular before the saccade, there appears to be a
difference in compression. Comparing the mislocalization patterns
Fig. 3. Percentage of successful and discarded trials for each condition. If trials were un
percentage is smaller than 3% the value is only shown graphically.
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(D) Saccade duration. (E) Peak velocity of the eye during the saccade. (F) Standard devia
for saccade targets near the screen centre and near the border (ran-
dom direction condition) showed that this effect is not related to
the location of the saccade target on the screen (not shown). When
only rightward saccade trials of the random direction condition
were considered, we found a mislocalization pattern that was sim-
ilar to the overall pattern for the random direction condition (see
dashed curves in Fig. 5). Thus the direction of the saccades is also
not responsible for the difference.

We tested whether there was a significant difference in the
maximum compression between the two conditions. We did not
find a significant difference (p = 0.08). Moreover, the maximum
compression is not correlated with the mean peak velocity for
either condition (Fig. 6; rightward condition: r = 0.49, p = 0.40, ran-
dom direction condition: r = �0.48, p = 0.41). We also examined
the correlation between maximum compression and the other
saccadic parameters that we had determined (latency, standard
deviation in latency, amplitude, duration and standard deviation
in peak velocity) for both conditions. We only found a correlation
between the maximum compression and the standard deviation
in latency, and this was only significant for the rightward direction
condition (r = 0.97, p = 0.005; not shown).

4. Discussion and conclusion

We found the predicted faster saccades for the random direc-
tion condition, but not the predicted associated increase in
compression. We even found a slight reduction of compression.
The difference in the compression was most evident for flashes
presented well before the saccade, and gradually decreased during
successful on several criteria they were assigned to the first on the list. When the
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the saccade (see Fig. 5). In accordance with the departure from the
prediction, we did not find the previously reported positive corre-
lation (across subjects) between compression and mean peak
velocity of the saccades, on which the prediction was based (see
Fig. 6; Ostendorf et al., 2007). Thus it is unclear how we should
interpret the small difference in compression that we do find.

We excluded two possible reasons for the found difference: the
position on the screen and the directions of the saccades. Another
possible source for the small difference in compression might be
the variable start location of the saccade in the random direction
condition. Subjects might use the remembered saccade start loca-
tion as a reference for localizing the flash. In the rightward saccade
condition the start location was always the same, so subjects are
unlikely to misjudge it systematically (the appearance of the start
location on each new trial provides feedback). With random loca-
tions the perceived location of the start of the saccade is more
likely to be misjudged systematically (for instance always judging
it to have been closer to where the flash had occurred). Systemat-
ically misjudging the saccade start location could change the per-
ceived location of the flash if the flash is considered to have
occurred before the saccade. Relying on the misjudged position
of the saccade start location would explain why the small differ-
ence in compression that we found for flashes presented before
the saccade gradually decreases during the saccade.

The method we use to determine compression and shift is
different from the one that was introduced by Lappe et al.
(2000). They defined the shift index based on the mean of the
perceived flash locations, and the compression index on the
standard deviation of the perceived flash locations. Both their
indices are normalized to their respective average values
100 ms before and after the saccade. One disadvantage of this
method is that the flash locations must be arranged symmetri-
cally around the saccade target location. Otherwise, a pure com-
pression towards the saccade target will be interpreted as being
accompanied by a shift, because the compression is not towards
the average flash location. Also, the normalization to the average
value 100 ms before and after the saccade is rather arbitrary, and
would transform any compression or shift for flashes before (or
after) the saccade to an apparent effect at other moments. The
definition that we used is more flexible in this respect, but is
not fundamentally different.
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Another methodological point is that making saccades to follow
a dot as it jumps in random directions is a very natural thing to do.
It is similar to what we do in daily life; we respond to the content
of the scene and the task at hand by making saccades in various
directions in rapid succession. When instructed to only make right-
ward saccades, we found that subjects have shorter saccadic laten-
cies and the latencies of the saccades are more variable (Fig. 4).
This made it harder to present the flashes around the time of the
saccade (so we had to discard more trials for the rightward condi-
tion, as shown in Fig. 3). Subjects sometimes even did not make
any saccade at all in the rightward condition (in Fig. 3 these are
indicated in the category wrong flash timing). Thus the task was
easier to perform when the subject needed to follow a dot jumping
in random directions than when they always had to follow the
same displacement of the dot.

To summarize, in this paper we show that the predictability of
the saccade target does not influence the mislocalization pattern
(although the predictability of the starting point of the saccade
might). Flash positions are mislocalized systematically near the
time of saccades, but the extent to which this occurs is largely
independent of how long in advance the saccade can be
anticipated.
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