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Abstract

It has been proposed that haptic spatial perception depends on one’s visual abilities. We tested

spatial perception in the workspace using a combination of haptic matching and line drawing tasks.

There were 132 participants with varying degrees of visual ability ranging from congenitally blind to

normally sighted. Each participant was blindfolded and asked to match a haptic target position felt

under a table with their nondominant hand using a pen in their dominant hand. Once the pen was

in position on the tabletop, they had to draw a line of equal length to a previously felt reference

object by moving the pen laterally. We used targets at three different locations to evaluate

whether different starting positions relative to the body give rise to different matching errors,

drawn line lengths, or drawn line angles. We found no influence of visual ability on matching error,

drawn line length, or line angle, but we found that early-blind participants are slightly less

consistent in their matching errors across space. We conclude that the elementary haptic

abilities tested in these tasks do not depend on visual experience.
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Introduction

The environment is filled with rich, multisensory stimuli. In humans, the visual system plays a
crucial role in information processing, especially at distances that cannot be physically
reached. For nearby stimuli, touch and proprioception help to form a complete picture of
the world. Visual information plays an important role in the development of various spatial
abilities, as it provides information about the position and arrangement of the surrounding
environment that the nervous system would not otherwise necessarily have access to.

Effects of Early Blindness

Several studies suggest that the brain may respond to visual deprivation by improving the
sensitivity of the remaining sensory systems. Early-blind individuals show enhanced skills for
some auditory tasks such as localization of a single sound on the horizontal plane (Lessard,
Paré, Lepore, & Lassonde, 1998; Röder et al., 1999; Voss et al., 2004). Early-blind individuals
have also been shown to have lower spatial thresholds for tactile discrimination of stimuli
(Brown & Stratton, 1925; Jones, 1972), contrary to an earlier report (Seashore & Ling, 1918).
Postma, Zuidhoek, Noordzij, and Kappers (2007) found that early-blind and late-blind adults
were significantly faster than blindfolded-sighted adults at placing wooden shapes into a board
with corresponding cutouts, as well as in placing the same shapes in the correct positions on a
flat surface frommemory. However, some studies did not find superior performance in haptics
due to absence of vision. Jones and Vierck (1973) did not find a difference in threshold between
blind and sighted individuals in detecting which of two stimuli pressed against their arm was
longer. Gori et al. (2010) found that visually impaired children (one late-blind and the rest
early-blind) were slightly better than sighted children at tactile object size discrimination but
that they were drastically worse at object orientation discrimination, perhaps suggesting that
orientation perception relies more heavily on the visual system.

On the other hand, blind individuals unsurprisingly suffer from deficits in a number of
skills ranging from auditory and spatial localization to navigation (see Cuturi, Aggius-Vella,
Campus, Parmiggiani, & Gori, 2016 for a review on this topic). Recent studies show that
early-blind individuals fail in localizing sounds under particular auditory settings (Gori,
Sandini, Martinoli, & Burr, 2013; Vercillo, Milne, Gori, & Goodale, 2015). Hollins and
Kelly (1988) observed an interesting discrepancy between early-blind adults’ ability to
point to an object on a table after having walked partway around the table and their
ability to place the object in its original position after having walked around the table;
whereas blindfolded-sighted people performed well in both of these tasks, early-blind
adults performed well at replacement but not at pointing. It has also been shown that
while early-blind and blindfolded-sighted adults are both better at remembering
symmetrical configurations of blocks on a table than at remembering asymmetrical ones,
the early-blind group was worse at remembering vertically symmetrical configurations than
horizontal ones (Cattaneo et al., 2010). The authors proposed that the blindfolded-sighted
adults were able to benefit from enhanced attention to vertical symmetry granted by the
visual system.
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In some cases, it does not appear to matter when a person first became blind to have
reduced performance at a skill. Gentaz and Hatwell (1998) observed no differences between
early-blind and late-blind adults in their ability to match the orientation of a rod to that of a
reference rod but concluded that their reliance on gravitational cues for information differed
from that of sighted participants (Gentaz & Hatwell, 1996).

Haptic Space Perception

When describing locations of objects, people can rely on two kinds of frames of reference.
Using an egocentric reference frame, one might describe objects as ‘‘one meter to my left’’ or
as ‘‘ten degrees to my right.’’ Using an allocentric reference frame, one relies on external
references, such as ‘‘one meter to the left of the laptop’’ or ‘‘below the table.’’ To manipulate
an object, one needs to know its egocentric location, but when remembering or describing its
position, it can be more useful to rely on the allocentric location because it does not depend
on one’s own spatial orientation. There is evidence that eye-centered coordinates are
fundamental for the association of sensory signals (Cohen & Andersen, 2002; Jay &
Sparks, 1987; Pouget, Deneve, & Duhamel, 2002), and the visual modality might offer a
spatial background for remapping sensory information to obtain stable externally defined
coordinates when one’s spatial orientation (including that of the eyes) changes. When the
visual signal is missing, such spatial remapping may not occur. In agreement with this idea,
congenitally blind individuals are not subject to the ‘‘crossed hand illusion’’ (Röder, Rösler,
& Spence, 2004), presumably because they do not have the perceptual conflict with an
externally anchored reference system for tactile stimuli. There is also experimental evidence
that congenitally blind individuals do not remap auditory stimuli onto externally defined
coordinates (Röder, Kusmierek, Spence, & Schicke, 2007). It has been suggested that it is
specifically early-blind people whose spatial experience of the world depends largely on
egocentric reference frames rather than allocentric reference frames (Iachini, Ruggiero, &
Rutolo, 2014; Pasqualotto, Spiller, Jansari, & Proulx, 2013). Therefore, one might generally
expect the early-blind to rely more on egocentric reference frames for judging spatial
relations.

It has been shown that two bars on a tabletop that are felt to be parallel can actually have
dramatically different angles from one another and that this difference scales almost linearly
with the angular distance between them (Kappers, 2003; Kappers & Koenderink, 1999). The
researchers concluded that participants’ perception of haptic space relied on a combination of
allocentric and egocentric reference frames, the latter of which was centered on the hand.
We expect that similar deviations will be found for drawing lines in a specified direction.

Using a similar parallel-bars paradigm, Postma, Zuidhoek, Noordzij, and Kappers (2008)
showed that when instructed to wait 10 s between exploring a reference bar and rotating a test
bar, early-blind participants relied more on an egocentric reference frame than late-blind and
blindfolded-sighted adults. Based on this increased reliance on an egocentric reference frame,
we expect early-blind adults who are instructed to draw straight frontoparallel lines starting
at different distances from the body midline to draw lines with more strongly deviating angles
than sighted people. Similarly, when instructed to draw lines of a given length at different
distances from the body, early-blind adults’ drawn lines may be longer at larger distances
from the body due to relying more heavily on an egocentric reference frame, at least if such a
reference frame is in polar coordinates (direction and distance).

Kuling, Brenner, and Smeets (2016) have shown that sighted adults are not always
accurate at placing their hand on a table above the location of their other, unseen hand
under the table. Kuling, van der Graaff, Brenner, and Smeets (2014) showed that matching
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a target using a handheld pointing tool does not result in differences in magnitude or
variability of error compared with using one’s own fingertip in a visuoproprioceptive
matching task. Furthermore, while it has been shown that using proprioception alone in a
matching task is less effective than combining sight and proprioception (Van Beers, Sittig, &
Denier van der Gon, 1999), it also remains to be tested whether early-blind adults’
proprioceptive accuracy and precision in a position matching task are worse than that of
blindfolded-sighted adults. We speculate that this matching error is already ameliorated by
way of the visual system and that early-blind adults may show greater matching errors than
blindfolded-sighted adults due to a lack of visual experience.

Methods

Participants

All participants in the experiment (n¼ 132, mean age 48.5 years, SD¼ 17.0, 22 left-handed,
86 females) were attendees of the ‘‘ZieZo Beurs,’’ a convention for blind and visually
impaired people, who visited the Utrecht University booth that was set up for the event.
All participants were naı̈ve to the purpose of the experiment, with the exception of one
participant with normal vision who was also an author. Participants were given an
explanation of the task and were asked for their informed consent. Once verbal consent
was given, they were asked several general questions about their vision, age, and handedness.

For the analyses, the participants were grouped based on level of vision. The five groups
were referred to as early-blind, late-blind, low vision, high vision, and sighted. Early-blind
participants were all born completely blind and have never experienced any level of vision.
Late-blind participants all became completely blind either due to a congenital condition
leading to gradual loss of vision or due to an accident. The age of total vision loss in the
late-blind group ranged from 2 to 47 years. Participants in the low vision group reported
having some degree of visual perception, but no more than 10% in either eye. Participants in
the high vision group reported having more than 10%, but no more than 80% vision in either
eye. Participants in the sighted group reported having normal or corrected-to-normal vision.
Level of vision was determined by self-report. The low vision and high vision groups
consisted of participants who possessed congenital visual deficits as well as deficits
acquired later in life by various means.

Due to the nature of the convention, participants were not actively matched between
groups, and it was not possible to perform an in-depth intake session with each
participant. We therefore lacked information regarding our participants’ specific visual
capacities, as well as haptic processing abilities such as the ability to read braille, which
could potentially have an impact on their ability to perform the tasks described here.
Details of the participant groups can be found in Table 1.

Experimental Setup and Procedure

The setup consisted of a 100� 65 cm wooden board on which flip chart paper sheets could be
mounted. The board rested on two supporting trestles, resulting in a table (Figure 1). Four
metal washers were placed under the board as haptic targets for the nondominant hand.
The washers had a diameter of 3 cm with a 1-cm gap in the middle such that participants
could comfortably guide their fingertip to the center of the washer. Two of these washers were
placed along the center of the board, at 15 and 35 cm away from the long edge (henceforth
referred to as the near and far targets, respectively). The remaining two washers were placed
20 cm to the right and 26.6 cm to the left of the near target, respectively (henceforth referred
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to as the side targets). The different lateral distances of the two side targets were an error that
we compensated for in the analysis. The right-side target was used only by right-handed
participants, and the left-side target was used only by left-handed participants.
An aluminum bar of 10� 1� 1 cm served as a reference object, which participants held
briefly at the beginning of the experiment.

Participants sat in a chair in front of the setup and were blindfolded. The participants sat
such that their midsagittal body plane was aligned with the near and far haptic targets. The
task was explained, and participants were invited to explore the table with their hands to get a
feel for the positions of the haptic targets. Participants were asked to confirm that they could
reach all three targets before continuing. The experimenter handed the reference object to the
participants and instructed them to get a feel for the length of the object. Participants were
allowed to hold it for several seconds in their dominant hand and manipulate it. They were
not allowed to set it down on the table, run their finger along the length of it, or touch it with
their nondominant hand. Most participants held the object between their thumb and pinkie
finger to get a feel for the object’s length; they were not restricted to holding it in in their
palm. The experimenter explained that the participants’ task would be to draw lines of this

Figure 1. Top view of a participant at the experimental table. The haptic targets, placed under the table, are

indicated by red rings, contacted by the index finger of the nondominant hand. The dominant hand was

holding a pen above the table. Target size is misrepresented here for the sake of visibility.

Table 1. Group-Level Characteristics of Participants.

Group n Age (M� SD) Left-handed Female

Early-blind 7 43� 17 1 5

Late-blind 9 64� 11 2 5

Low vision 30 51� 12 8 15

High vision 31 55� 17 6 18

Sighted 55 42� 18 5 43

Total 132 49� 17 22 86

Nelson et al. 5



length. The experimenter took the reference object back once the participants said they had
an idea of the length (typically after 5 to 10 s) and confirmed that they understood the task.

The experimenter then placed an ink marker in the participants’ dominant hand and
guided the index finger of their nondominant hand toward one of the three haptic targets.
Participants were asked to use the marker to indicate on the paper where their nondominant
hand was placed, and from this point draw a line with the same length as the reference object.
Three targets were used: the near and far targets, as well as the side target that corresponded
with their dominant hand. Right-handed participants were asked to draw all lines from left to
right, and left-handed participants were asked to draw all lines from right to left. All
participants thus drew three such lines, one from each of the three targets in a randomized
order, without any practice or familiarization. Because we did not know in advance how
many participants we would be able to recruit, we did not counterbalance the order of the
targets across participants. After a participant had finished the task, the sheet of paper was
removed, and a fresh sheet was placed on top of the setup for the next participant.

Analysis

For each participant and each target, we determined the position of the dot at the start of the
line, the matching error (i.e., the two-dimensional vector between the haptic target and
the dot at the start of the line), the length of the drawn line (i.e., the shortest distance
between the start and the end of the drawn line), and the angle of the drawn line relative
to the coronal plane. For each of our analyses, we examined whether the early-blind
performed differently than the sighted group. We used one-tailed independent samples
t tests to do so, as we expected early-blind participants to show greater matching errors,
length ratios between near and far target lines, and angular differences between near and side
target lines than sighted participants. In cases where a significant difference was found, we
also performed one-tailed t tests to determine whether the early-blind group differed from the
other groups.

In this article, four questions are investigated:

1. Do early-blind participants show greater matching errors than sighted participants?
2. Do early-blind participants show less matching error consistency than sighted

participants?
3. Do participants draw longer lines from far targets than from near targets, and is this

difference larger for early-blind than for sighted participants?
4. Do participants draw differently oriented lines from the near and side targets, and is the

angular difference larger for early-blind participants than for sighted participants?

Matching errors. We first analyzed the magnitude of the matching errors of each participant
group, ignoring the direction of the error. To determine whether participants’ matching
errors (both magnitude and direction) were consistent across targets, we calculated a
consistency value as described in previous studies (Kuling et al., 2016; Kuling, van der
Graaff, Brenner, & Smeets, 2017). The consistency value was determined for all three
combinations of the three target positions (i.e., MEnear compared with MEfar, MEfar

compared with MEside, and MEside compared with MEnear), after which an average value
for each participant was calculated. To determine a meaningful baseline, we also calculated a
chance consistency error by comparing every individual matching error with every other
matching error; a value above this baseline indicates that participants are at least
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somewhat consistent in their errors across targets (Kuling et al., 2016, 2017). We analyzed
whether early-blind participants had significantly larger matching error magnitudes and
lower consistency values than sighted participants.

Line analysis. For the comparison of the drawn lines, we looked at drawn line lengths starting
from the near and far targets, as well as drawn line angles starting from the near and side
targets. For the lengths, we analyzed whether the ratio of the far target line length to the near
target line length was larger than 1, and whether it was larger for the early-blind than for the
sighted participants. For the angle, we examined whether the angular differences between
drawn lines at the near and side targets were greater for early-blind participants than for
sighted participants. To correct for the difference in relative position of the left- and right-side
targets, we multiplied left-handed participants’ values by 20 cm/26.6 cm, as it is known that
the angle at which a line is felt as frontoparallel scales linearly with distance from the body
midline (Kappers, 1999).

Results

The data of three participants (two low vision and one sighted) were completely excluded
from the analysis because they drew lines from arbitrary starting points and reported that
they did not realize they needed to match the haptic targets or pay attention to the reference
object’s length. Data from a further 10 participants (three late-blind, two low vision, three
high vision, and two sighted) were excluded from analyses of the drawn lines, but not from
that of the matching task, due to the participants drawing one or more lines in the wrong
direction or, in two cases, starting their drawn lines from somewhere other than the (correctly
located) haptic targets.

The raw data of an example representative participant (Figure 2) show matching errors
that are quite consistent over the three targets: The drawn lines all started about 3 cm from
the target position (farther away and a bit to the left). Furthermore, the lengths of this

Figure 2. Example experiment sheet from a 20-year-old right-handed male in the sighted group with

representative performance. Black dots indicate the location of the haptic targets under the table, and the

reference object is displayed above the near target for comparison. The target dots and reference object

were not present on the paper during the experiment. The grid squares have 2.5 cm sides.
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participant’s drawn lines are about 6 cm, considerably shorter than that of the 10-cm
reference object. The line drawn from the side target is rotated a few degrees clockwise
relative to the one drawn from the near target.

The individual matching errors for right-handed participants show quite some variability,
but there was no evident difference between groups (Figure 3(a)). We focus our analysis on
the magnitudes of the matching errors (Figure 3(b)). We found that early-blind participants
did not have greater mismatch magnitudes than sighted participants (one-tailed independent
samples t test), t(59)¼�0.184; p¼ .573.

The consistency of the early-blind participants’ errors across target positions is close to
chance level, whereas the other groups show more consistency (Figure 4). Early-blind
participants showed a significantly lower consistency value than sighted participants (one-
tailed independent samples t test), t(59)¼ 2.264; p¼ .013. The early-blind also showed a
significantly lower consistency value than the other three groups—late-blind: t(14)¼ 1.189,
p¼ .040; low vision: t(33)¼ 1.183, p¼ .038; high vision: t(36)¼ 2.894, p¼ .003.

Most participants drew lines that were considerably shorter than the 10 cm length of the
felt object (Figure 5(a)): on average only 6.59 cm (66% of the reference object’s length). They
drew lines of similar lengths at the different distances: The average ratio of the far and near
line lengths was 1.08 (Figure 5(b)). Early-blind participants’ line length ratios were not
significantly larger than those of sighted participants (one-tailed independent samples
t test), t(57)¼ 1.50, p¼ .07. Furthermore, neither early-blind nor sighted participants’ line
length ratios were significantly larger than 1.0 (one-tailed one sample t test)—early-blind:
t(6)¼ 1.25, p¼ .13; sighted: t(51)¼�0.04, p¼ .52—indicating that there was no tendency to
draw lines of a certain angular length, rather than ones that match the reference object’s
actual length.

Lines from the side target were drawn in a systematically different direction than those
from the near target (Figure 6). The 5.3� angular difference was significant across groups
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(clockwise for right-handed participants and counter-clockwise for left-handed participants;
one-tailed paired-samples t test), t(118)¼ 6.26, p< .001. The angular difference between lines
drawn from the near and side targets was not significantly larger for early-blind than for
sighted participants (one-tailed independent samples t test), t(57)¼�1.00, p¼ .84. These
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findings indicate that while most participants draw lines at different angles when beginning in
different directions from their body, in accordance with them relying to some extent on a
(polar) egocentric representation, the angle was not particularly large in early-blind
participants, suggesting that the early-blind do not rely more strongly on such a
representation.

Discussion

We did not observe the differences that we anticipated between early-blind and blindfolded-
sighted participants. Both early-blind and sighted participants drew lines that are much
shorter than the felt bar and were drawn at angles that similarly depended on eccentricity.
As these effects were similar across groups, they can better be attributed to a general
property of haptic perception than to an effect that depends on visual experience.
The sizes of our participant groups were relatively small, so we may have failed to
detect small but real effects. Our interest was in clear-cut effects of lack of visual
experience, for which we investigated differences between early-blind and sighted
participants. The expected systematic effects of lack of visual experience were not evident
in our sample.

We are not aware of a theory that makes specific predictions for how the performance in
our task would depend on details of the impairment such as the age of onset of blindness.
Given the time constraints inherent to data collection at a convention, we did not collect data
on the precise history of our participants’ visual impairments. Therefore, we cannot perform
any exploratory analysis on this. Similarly, we did not intend to investigate biases caused by
other factors than being blind, so we did not examine whether participant height, hand size,
or arm length played a role in task performance.
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Matching Errors

We observed average matching errors of 3 cm, which is in line with previous reports
(Haggard, Newman, Blundell, & Andrew, 2000; Kuling et al., 2016; Von Hofsten &
Rösblad, 1988). What is particularly interesting about this is that participants who have
never experienced vision are just as accurate at matching their hand positions as
blindfolded-sighted participants, indicating that vision does not play a role, even
indirectly, in this task. The low consistency value in early-blind participants (Figure 4) is
remarkable. While the actual size of the matching error is well in line with that of other
groups (Figure 3(b)), this error was not consistent across target positions in the early-blind
participants, in contrast to the other groups. It is possible that growing up with visual input
plays a role in developing this consistency, which early-blind people would therefore lack.
However, given that the observed range of consistency values among early-blind participants
falls within that of nearly all other groups, and given that the early-blind group consisted of
only seven participants, it is not clear whether this difference is indicative of an actual
matching deficit in early-blind individuals, or is simply due to chance.

Length Reproduction

It is worth pointing out that our participants fall well short of the desired length when
drawing lines, regardless of level of visual experience or starting position of the line
(Figure 5(a)). This appears to be in contrast with the findings of Hermelin and O’Connor
(1975), who observed that when congenitally blind and blindfolded-sighted children were
asked to reproduce vertical movements traveled by their hand, they were accurately able
to do this for path lengths of 10 to 30 cm. Their task relied on kinesthetic movement
information rather than on static tactile information. Our task involves the transformation
of static tactile information (a felt bar in one’s hand) to dynamic proprioceptive information.
It is possible that this transformation is responsible for the systematic undershoot.
They noticed a difference in performance between blind and sighted participants
when reproducing the longer movement distances (25–30 cm): The blind participants
undershot these more than the sighted. As a hand cannot statically feel a length of 25 to
30 cm, this difference for longer movement distances cannot be tested with our paradigm of a
handheld length.

Previous work has shown that the horizontal–vertical illusion exists in the haptic domain
as well as the visual domain. Heller and Joyner (1993) demonstrated that early-blind adults
show evidence for a vertical compression of haptic space, but the size of the effect was small
compared with the undershoot that we observe in our data. As such, we do not expect that
the lengths of our participants’ drawn lines would be substantially longer if we altered the
orientation in which they were instructed to hold the reference object.

During the review process, it was suggested that hand size may have influenced
participants’ perception (a smaller hand might lead to the percept of a longer bar) and
thus on the length of the drawn lines. We did not measure hand size during the
experiment, but analyzed our data in light of gender (on average women have smaller
hands). Indeed, it appears that women drew somewhat longer lines than men: The median
line length (calculated over all groups) was 6.4 cm for women and 5.8 cm for men.

Lederman, Klatzky, and Barber (1985) tested participants’ ability to reproduce a distance
between two points by moving their index finger after traveling along an indirect path
between the two points with that finger. They observed that early-blind participants
tended to make larger reproductions of the distance than late-blind participants. They also

Nelson et al. 11



observed an overshoot in reproduced length for all participants for lengths up to 25 cm and
an undershoot for greater distances. Because Lederman et al.’s participants traced a path
with their finger while attending to the distance between the starting and ending positions,
whereas our participants acquired length information without any tracing motion, our
participants’ systematic undershoot of the target distance cannot be related to this overshoot.

Moscatelli, Naceri, and Ernst (2014) tested whether participants could accurately
reproduce lengths of a triangle path felt by a tactile stimulation device. Their participants
could much more accurately reproduce the perceived displacement than our participants
reproduced perceived length: Their reported 98% accuracy is far higher than our 66%
accuracy. A reason for this difference could be that the two experiments differed in how
participants perceived the distances they had to reproduce. Their participants rested their
index finger on a spherical device that rotated while the finger remained stationary on top of
it, providing the tactile experience of moving a finger over a surface. Our participants were
allowed to manipulate a three-dimensional reference object in their dominant hand, but they
were not permitted to run a finger along the length of the object.

The findings of Moscatelli et al. (2014), Lederman et al. (1985), and Hermelin and
O’Connor (1975) all show that people are able to reproduce a given length reasonably
accurately. In all these experiments, the participants could judge the length based on
haptic motion information. As our participants made systematic errors and lacked this
information, it may be necessary to have haptic motion information to accurately
reproduce lengths in a drawing task. Irrespective of the reason for the distances being
underestimated in our study, the fact that we observed no differences between early-blind
and sighted participants in the ratio of lengths of lines drawn from the near and far targets
(Figure 5(b)) suggests that for this task, the early-blind do not rely more on an egocentric
coordinate system than the sighted.

Parallel Reproduction

Kappers (2004) demonstrated that haptic space perception relies on a combination of
egocentric and allocentric reference frames, explaining the tendency of the angle of the test
bar to lie somewhere between what would be considered parallel in purely allocentric or
purely egocentric reference frames. Her experiments to map out haptic space were
far more extensive than ours, but the differences that we see in drawn line orientation
(Figure 6) are of similar magnitude to what she observes. Van Mier (2013) tested sighted
adults’ ability to draw a line parallel to a felt but unseen bar. Despite the fact that her
participants were allowed to see the line they were drawing, there was still an angular
difference between the orientation of the reference bar and that of the drawn line.
Although this difference is smaller than what she observed in her purely haptic parallelity
task, it still suggests that the reference frame experienced by each hand is important. This
similarity is particularly interesting because we never explicitly told our participants to draw
parallel lines; we simply always instructed them to draw the lines ‘‘from left to right’’ (or from
right to left, if the participant was left-handed).

We observed no differences between early-blind and sighted participants in angular
differences between the drawn lines from the near and side targets. This confirms that for
this task, the early-blind do not rely more on an egocentric coordinate system than the
sighted. The small but significant difference in angle between the drawn lines from the
near and side targets can therefore be said not to rely on visual experience. Previous work
has shown that women make substantially larger errors than men when matching the
orientations of two haptically felt bars (Kappers, 2003). We did not observe a similar
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effect in the orientation of the drawn lines. Our female participants even showed a slightly
smaller median angular difference than our male participants (5.0� and 5.5�, respectively).

Postma et al. (2008) observed differences between early-blind, late-blind, and sighted
participants in a delayed bar parallelity task. When asked to wait 10 s between feeling a
reference bar and setting a test bar parallel to it, blindfolded-sighted participants
performed better than late-blind participants, who in turn performed better than early-
blind participants. The fact that we do not observe a similar effect, despite a delay
between feeling the reference object and drawing the lines, likely stems from the fact that
we do not explicitly ask our participants to consider the egocentric relation of the object to
the participant. Instead, we only asked them to consider the length of the object, regardless of
orientation, so the angle of the participants’ drawn lines should have no relation to the angle
at which they felt the object.

Conclusion

We expected that early-blind participants would rely more on information processed within
an egocentric reference frame but found no indication of this in our results.

All data pertaining to this study, both analog and digital, are freely available for review.
Interested parties are invited to contact the first author for specific questions or access to the
data and materials.
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