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Abstract
Many experiments aim to investigate the time-course of cognitive processes while measuring a single response per trial. A
common first step in the analysis of such data is to divide them into a limited number of bins. As we demonstrate here, the way
one chooses these bins can considerably influence the resulting time-course. As a solution to this problem, we here present the
smoothing method for analysis of response time-course (SMART)—a complete package for reconstructing the time-course from
one-sample-per-trial data and performing statistical analysis. After smoothing the data, the SMARTweights the data based on the
effective number of data points per participant. A cluster-based permutation test then determines at which moments the responses
differ from a baseline or between two conditions. We show here that, in contrast to contemporary binning methods, the chosen
temporal resolution has a negligible effect on the SMART reconstructed time-course. To facilitate its use, the SMART method,
accompanied by a tutorial, is available as an open-source package.
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Many experiments aim to investigate the time-course of cog-
nitive processes by measuring the resulting performance as a
function of time. For example, researchers have been interest-
ed in whether fast decisions are less accurate than slow deci-
sions (Heitz, 2014; Henmon, 1911). To answer this question,
one could separate fast responses from slow responses, and
then examine whether they differ in accuracy (Henmon,
1911). However, such a crude approach allows only for a
sneak-peek into the time-course of the decision process, while
the real time-course of decision-making would remain a mys-
tery. Fully understanding the dynamics of a cognitive process
requires reconstructing its time-course from the available data.
The challenge lies in the fact that in most behavioral experi-
ments, the time-course of a cognitive process is sampled on a

one-sample-per-trial basis. In the example above, each trial
would contain a single response measure (e.g., correct or in-
correct) sampled at a certain (response) time that will be dif-
ferent for every trial. In the present paper, we present a novel
method for visualizing and analyzing such data as a time-
series, similar to how EEG data are typically visualized and
analyzed.

For more than 100 years, the standardmethod for creating a
time-course of one-sample-per-trial data has been binning
(Henmon, 1911; Ratcliff, 1979; Vincent, 1912, as cited in
Ratcliff, 1979). This method prescribes dividing the time var-
iable into several bins. For each trial, the data from the re-
sponse variable are then allocated to the respective bins. The
data per bin are then collapsed (typically, an arithmetic mean
is taken) to produce a single data point per bin. The resulting
values yield a time-course per condition for each participant,
which can be collapsed across participants to construct the
time-course of interest.

There are two main approaches to data binning in the liter-
ature. The first is named BVincentizing,^ after Vincent (1912),
and probably the most popular approach (but see Rouder &
Speckman, 2004, for a critical evaluation). In Vincentizing,
the bins are created by dividing the time variable into several
contiguous intervals with an equal number of trials for each
participant, so that the performance data can be analyzed
across participants with maximal power. The second method
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of binning involves creating several contiguous time intervals
that are the same for each participant (Henmon, 1911).

Both binning methods suffer from a number of problems,
ranging from signal distortion and reduction in temporal res-
olution to complications for statistical analysis. Below, we
provide a detailed analysis of the problems of using these
two methods. The goal of this paper is to introduce the
smoothing method for analysis of response time-course
(SMART) method—a new data analysis method that provides
a complete package for reconstructing the time-course from
one-sample-per-trial data and performing statistical analysis.
We demonstrate the capabilities and advantages of our method
by contrasting it with two binning methods using two existing
experimental datasets.

Binning methods

When applying the Vincentizing method, it is important to be
aware of the crucial assumption that the time-course of the
dependent variable (e.g. the accuracy) of all participants are
distributed over the same phase of the cognitive process (see
Fig. 1, left column). When averaging such a time-course
across participants, the temporal pattern of the cognitive pro-
cess can be accurately reconstructed using Vincentizing (see
Fig. 1, left column, third row). However, this assumption is
violated if the dependent variable is time-locked to an external
event (e.g., a neural response to visual or auditory cue), but the
response times (and thus the resulting performance) vary be-
tween participants (see Fig. 1, right column). If the assumption
of a participant-specific data distribution for the dependent
variable is violated and participants have very different ranges
of response time, averaging using Vincentizing can dramati-
cally distort the reconstruction of the time-course (see Fig. 1,
right column). As the bins are determined by each partici-
pant’s distribution of response times, the borders of the bins
will be different for each participant. Therefore, a signal that
has a sigmoid shape can appear linear and show only a frac-
tion of the original variation after reconstruction by
Vincentizing. To make such variability in the timing of a bin
across participants visible for the reader, horizontal error bars
should also be included in the time-course plot (see Fig. 3a ,
Experiment 1, Boon, Zeni, Theeuwes, & Belopolsky, 2018,
for an example), but this is often forgotten (Godijn &
Theeuwes, 2002; Silvis, Belopolsky, Murris, & Donk, 2015).

The Bhard-limit binning^ method assumes that every data
point from every participant represents a sample from the
same general distribution—that is, an event-locked dependent
variable (see Fig. 1, right column). One consequence of this
method is that if participants have widely different response
distributions, participants do not contribute equally to each
bin. In extreme cases, several bins may lack data from some
participants, while other bins are composed of data from all

participants. This may also introduce distortions to the average
time-course when an arithmetic mean of each bin is taken.
Most importantly, however, is that if the participants do not
contribute equally to each individual bin, performing adequate
statistics for each bin becomes questionable.

The SMART method

The response times of individual responses can be measured
with millisecond precision. Thus, the raw data has high tem-
poral precision. Using either of the two binning methods se-
verely reduces the temporal resolution as the number of bins
limits it. Often, the number of bins is chosen arbitrarily.
Furthermore, the chosen number of bins may complicate the
statistical analysis of the time-course. Notably, the power of
the statistical analysis will inevitably decrease with increasing
number of bins. Therefore, while reducing the temporal reso-
lution, a low number of bins is often chosen to keep sufficient
statistical power. To alleviate the aforementioned problems
with binning, a moving window averaging method was intro-
duced (Maij, Brenner, & Smeets, 2009). With this method,
data for each participant is smoothed using a moving
Gaussian kernel as a function of time. If a narrow kernel is
used, the temporal resolution of a dependent variable recon-
structed by this method is considerably better than the tempo-
ral resolution obtained by binning. The method is flexible, as
the size and type of kernel can be adjusted depending on the
type and quantity of data (Maij, Brenner, Li, Cornelissen, &
Smeets, 2010;Maij et al., 2009). To prevent effects of outliers,
Maij and colleagues excluded clusters of samples in the
smoothed time-course if there were not enough data. For in-
stance, Maij et al. (2009) excluded samples if there were less
than five data points within two times the standard deviation
away from the peak of the Gaussian. This approach can make
it difficult to average the time-course across participants if
there is missing data.

To answer the question BAt what moment the depen-
dent variable differs from a baseline?^, one could perform
a t-test for each time point in the smoothed data with an
appropriate correction for multiple comparisons.
However, a Bonferroni correction is not appropriate here,
as the dependent variable at adjacent time points are not
independent of each other. One way to solve both the
multiple comparisons problem and the problem of depen-
dence between data points, is to use clusters of several
temporally adjacent time points that show a significant
difference in the dependent variable instead of using indi-
vidual time points. If the strength of the effect, summed
over the cluster, is larger than a certain minimum strength,
the effect is considered to be significant. This procedure is
used in the analysis of EEG data (Maris & Oostenveld,
2007). When analyzing EEG data, choosing a minimum
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cluster strength to correct for multiple comparisons is usu-
ally done by using cluster-based permutation testing
(Fahrenfort, van Leeuwen, Olivers, & Hogendoorn,
2017; Maris & Oostenveld, 2007). However, application
of the cluster-based permutation testing to smoothed one-
sample-per-trial data is not trivial, since unlike EEG data,
the data do not contain a time-series per trial, and thus
many time-series per participant, but rather consists of a
single smoothed time-series per participant.

Below we introduce the SMART method. It consists of
three major parts: (1) temporal smoothing, (2) weighted sta-
tistics that takes into consideration the contribution by each
participant, and (3) permutation testing. Two different ver-
sions of the statistics and permutation tests are presented: (a)
for determining when time points show a significant differ-
ence in the dependent variable from a baseline (weighted one-
sample t-test) and (b) for determining when time points show
a significant difference in the dependent variable between two
conditions (weighted paired-sample t test).

Part 1: Temporal smoothing and averaging
across participants

The first part of the analysis is the temporal smoothing of one-
sample-per-trial data (see Fig. 2). Since the dependent variable
is sampled once per trial, each trial returns a single data point
consisting an independent measure such as (reaction) time and
a dependent variable such as performance (fraction correct,
saccade curvature, etc.). The pairs of time and performance
data points aggregated across all trials per participant serve as
input for the temporal smoothing procedure. By repeating the
first and second step (see detailed explanation below) for each
participant, the time-series per participant is constructed. In
the third step, a weighted averaging across participants result
in a group-average time-series. Below, we present the proce-
dure for temporal smoothing (see Fig. 2).

The first step is to organize the data from all trials (N) per
participant (i) in pairs, linking the performance Pi(n) on trial
(n) with the time τi(n) on that trial: {Pi(n), τi(n)} (see Fig. 2a).

Fig. 1 A simulated dependent variable as a function of time and the
reconstruction of the simulated time-course by binning data. The left
column shows a simulated dependent variable with a participant-
specific signal and responses distributed over the relevant part of the
process for each of the five participants. The right column shows a sim-
ulated event-locked signal for five participants, but their response-time

distributions differ. The panels in both columns, from top to bottom, show
raw sample data, per participant Vincentized bins, averaged Vincentized
bins, per participant hard-limit bins, and averaged hard-limit bins.
Averaged across participants, the time-course of the dependent variable
is reconstructed well by Vincentizing for the participant-specific timing,
and by hard-limit bins for the event-locked timing. (Color figure online)
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The second step is to reconstruct the estimated time-series
for each participant by convolving the performances Pi(n)
with a Gaussian kernel of a width σ (see Fig. 2a):

Pi tð Þ ¼ ∑
N

n¼1

Pi nð Þ e−
τ i nð Þ−tð Þ2
2σ2

wi tð Þ

0
@

1
A ð1Þ

In Eq. 1, the estimated performance at a specific time point
Pi(t) is multiplied by the kernel density estimate depending on
the time-difference (determined by a Gaussian; see Fig. 2a). In
order to scale the output value to the same scale as the original
data, we divide this by wi(t), the sum of the kernel density
estimates with which the trials contribute at time (t) for partic-
ipant (i) (see Fig. 2a, gray insert):

wi tð Þ ¼ ∑
N

n¼1
e−

τ i nð Þ−tð Þ2
2σ2 ð2Þ

The third step is to average across participants. In this
averaging, we ensure that participants with more data
around certain time points contribute more to the group
average than participants with fewer data around the
same time points. This is achieved by multiplying each
participant’s estimated performance Pi(t) with the corre-
sponding normalized weight Wi(t) (see Fig. 2a, gray
insert):

PW tð Þ ¼ ∑
NP

i¼1
W i tð Þ Pi tð Þ ð3Þ

Fig. 2 Schematic illustration of the SMART smoothing procedure. a
Smoothing for data from one hypothetical participant with nine trials
using Eq. 1. Gray insert: Calculating the weight of each smoothed time
point for a participant, given by Eq. 2. wi(t) reflects the sum of kernel
density estimates under each Gaussian curve at the sample time point t. b
Constructing a weighted average time-course. The data is weighted across

participants for each time point. Using Eqs. 3 and 4. The stars reflect the
smoothed samples along the time axis. The black stars with connecting
black lines equal time points which differ significantly from baseline,
given Eq. 5 for testing against a baseline and Eqs. 6 to 8 for paired-
sample testing. (Color figure online)
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With Wi(t) being the normalized weight that ensures that
participants with more data around certain time points contrib-
ute more to the group average than participants with fewer
data around the same time points:

W i tð Þ ¼ wi tð Þ= ∑
NP

i¼1
wi tð Þ: ð4Þ

Part 2: Weighted statistics

Since the data are smoothed to a weighted time-series, the
statistics that we apply for each time point necessarily
needs to be weighted statistics (see Fig. 2c). Estimated
confidence intervals for one-sample and paired-sample
tests are determined by multiplying the corresponding
standard errors of the weighted mean by the t value cor-
responding to the desired Type I error (alpha) in the t
distribution with NP − 1 degrees of freedom. The calcu-
lations required for weighted statistics differ between one-
sample testing (against baseline) and paired-sample test-
ing and are described separately below.

Note that there is no analytical solution for the standard
error of the weighted mean. While several approximations
exist, here we use the ratio variance approximation, as de-
scribed in Gatz and Smith (1995), which has been demonstrat-
ed to be statistically indistinguishable from the standard error
estimates obtained through bootstrapping. We have also veri-
fied that the approximation applies to the current data by
performing bootstrapping and comparing the estimates (see
Supplementary Materials, Fig. S1). The main advantages of
using the approximation is that it requires less effort and less
computation time.

One-sample testing

For one-sample t test, the estimated standard error of the
weighted mean for each time point SEMW(t), is approximated
by:

SEMW tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP

NP−1
∑
NP

i¼1
W i tð Þ Pi tð Þ−PW tð Þ

� �� �2
s

ð5Þ

Paired-sample testing

For paired-sample testing, the estimated difference of the
standard error of the weighted mean ΔSEMW(t) is ap-
proximated by:

ΔSEMW tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP

NP−1
∑
NP

i¼1
W i

A½ � tð ÞW i
B½ � tð Þ

� �
ΔPi tð Þ−ΔPW tð Þ

� �2
� �s

ð6Þ
where Wi

[A](t) is the normalized weight for condition A
and Wi

[B](t) is the normalized weight for Condition B at
time (t). ΔPi(t) is the difference in the nonweighted av-
erage performance estimate between Condition A and
Condition B for each participant; it is given by:

ΔPi tð Þ ¼ Pi
A½ � tð Þ−Pi

B½ � tð Þ; ð7Þ

and where ΔPW tð Þ is the average weighted performance
difference between Condition A and Condition B:

ΔPW tð Þ ¼ ∑
NP

i¼1
W i

A½ � tð ÞPi
A½ � tð Þ−W i

B½ � tð ÞPi
B½ � tð Þ

� �
ð8Þ

Part 3: Cluster-based permutation testing

When analyzing the time-course of a cognitive process, an
important question is when a dependent variable differs from
a baseline or when the dependent variable differs between two
conditions. If the data are binned, traditional methods such as
ANOVA can be used to answer these questions by determin-
ing whether there is a main effect of Bin or a Condition × Bin
interaction. However, to investigate an onset or an offset of a
certain event, a post hoc analysis per bin is often performed.
Such a post hoc analysis requires some form of correction for
multiple comparisons, such as the Bonferroni correction. For
an analysis with only a few bins, the temporal resolution is
poor, when a large number of bins is used, Bonferroni correc-
tion will become too conservative, and greater statistical pow-
er will be required to reject the null hypothesis. Obviously, the
latter objection also holds when an ANOVA is applied to the
individual time points of the smoothed time-course. Since the
dependent variable is not independent of its value at a neigh-
boring time point, clusters of contiguous time points that show
a significant difference in the dependent variable will emerge.
Therefore, instead of determining whether differences at each
individual time point are significant, one needs to determine
whether the difference is significant for a given cluster, several
temporally adjacent time points that show a significant differ-
ence in the dependent variable. To solve this problem, cluster-
based permutation testing has been developed, a technique that
is a widely used method in neuroimaging (Bullmore et al.,
1999; Fahrenfort et al., 2017; Maris & Oostenveld, 2007).

Permutation analysis involves building the distribution of
the test statistic under the null hypothesis by calculating the
values of the test statistic for all rearrangements of labels on
the observed data points. In electrophysiology the trial labels
are shuffled between conditions, thereby averaging out any
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effect of condition. For each permutation, the clusters are
computed and the strength of the largest cluster (e.g., the test
statistic) is noted. Repeating the permutation process many
times allows building the distribution of cluster strengths un-
der the null hypothesis. Comparing the cluster strength of the
nonpermuted data to the cluster strength distribution in the
permuted data it is possible to determine the significance
level—for example, the test statistic corresponding to the
95th percentile (or a p value of .05; see Fig. 3). Any cluster
in the nonpermuted data with a cluster strength higher than the
95th percentile is a significant cluster.

Applying the cluster-based permutation to the EEG data is
straightforward because each trial contains an entire time-se-
ries. In contrast, applying the cluster-based permutation to
one-sample-per-trial data is not trivial, as all the trials are
needed to create a single time-series per participant.

Therefore, after shuffling the labels for each trial, the entire
smoothing procedure needs to be repeated for each permuta-
tion. Additionally, shuffling trials need to be performed differ-
ently, depending on whether one is testing significance be-
tween two conditions (paired-sample test) or against a base-
line (one-sample test). These two cluster-based permutation
methods are discussed separately below.

Permutation testing: Between conditions
and against baseline

The SMART procedure for cluster-based permutation testing
between two conditions is divided into six steps. The goal of
the permutation testing between conditions is to determine the
probability of observing the test statistic under the null hy-
pothesis. In this case, the first step is, therefore, to combine

Fig. 3 The SMART analysis procedure. a Procedure overview. b
Building the permutation distribution. c Performing statistical analysis
and determining significance threshold. (Color figure online)
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the data from both conditions within a participant (see Fig.
3b).

When using the SMART procedure for testing against base-
line, there is only a Condition A, no second condition.
Therefore, in this case, the first step involves creating a second
Bbaseline^ condition (Condition B). The time values (and thus
the number of trials) for Condition B are the same as the time
values in Condition A. All the values for the dependent variable
are set to the baseline value you would like to compare the data
against. One possible concern is that using a baseline without
variance might influence the results of the cluster-based permu-
tation testing by underestimating the cluster size required to
achieve statistical significance. However, adding noise to the
baseline in our cluster-based permutation procedure does not
result in different cluster distributions (see Fig. S2 and Table S1
in the Supplementary Materials). Thus, by creating a baseline
signal, we have two conditions: Condition Awith the measured
data and condition with an equal number of data points with all
the values set to the baseline value. Therefore, we can combine
the conditions in the same way as for testing between condi-
tions, and all subsequent steps are identical for between-
conditions testing and against baseline testing.

Because the question of interest is whether the dependent
variable differs between the two conditions, the second step is
to permute the data by shuffling the trials in the combined
data.

The third step is to create two new permuted datasets, one
for each condition. This is done by extracting the same num-
ber of trials from the combined and permuted data for each
condition as there were trials in that condition (e.g., if
Condition A had 30 trials and Condition B had 42 trials,
then one permuted condition would have 30 trials and the
other permuted condition would have 42 trials; see Fig. 3b).
After extracting the permuted conditions, each permuted con-
dition is run through the Gaussian smoothing procedure (see
Fig. 2a). This step is repeated for N permutations for each
participant. Each permutation results in a new smoothed
time-course and corresponding weights for each participant.

The fourth step is to perform the weighted group-level sta-
tistic (weighted paired-sampled t test) for each time point in
each permutation. This is the same group-level test as was
performed for the nonpermuted smoothed data. This results
in a p value and a t value for each sample for each of the
permuted time-series (see Fig. 3c).

The fifth step is to select the strongest cluster (the cluster
with the largest sum of t-values) for each permutation. If there
are no clusters in a given permutation, the largest t value in
that permutation is used as cluster strength, and thus the total
number of clusters in the final cluster distribution is equal to
the number of permutations (see Fig. 3c).

The sixth step is to determine the 95th percentile of the
obtained distribution of cluster strengths. Any cluster in the
nonpermuted data whose strength is equal to or is larger than

the 95th percentile of the permuted distribution constitutes a
significant cluster (see Fig. 3c). The nonpermuted cluster’s p
value is therefore given by 1 -the percentile of the
nonpermuted cluster in the permuted distribution.

Testing the SMART method on experimental
datasets

To demonstrate the differences in the estimated time-course
between the two methods of binning data and the SMART
method described above, the data from two different studies
were analyzed (see Figs. 4 and 5). The dataset from Silvis
et al. (2015) was used for testing performance between con-
ditions (see Fig. 3) and the dataset from van Leeuwen and
Belopolsky (2018) was used for testing performance against
baseline. Possible theoretical implications of the results of this
reanalysis for the individual studies will not be discussed, as
this is beyond the scope of the current manuscript. A good
method is robust under variations of parameter that can be
chosen freely by the experimenter. For all three methods, the
experimenter can choose the temporal resolution freely.
Therefore, we ran the analysis for five different values for
the parameter that influences the temporal resolution: five
number of bins (3, 4, 5, 6, 7) for Vincentizing and hard-limit
bins and five values of the σ (50 ms, 40 ms, 30 ms, 20 ms, and
10 ms) for the SMART method. By running the analysis with
different temporal resolutions and comparing the temporal
estimates for each temporal resolution, we can estimate which
one of the methods is least sensitive to this parameter change.
When using the Vincentizing method, the data are split into
equally sized bins (Vincent, 1912). For the hard-limit bins, we
split the period of interest into equally sized bins. For both
binning methods, a Bonferroni-corrected t test was performed
to test whether performance differed in a bin.

To compare the temporal estimates as a function of tempo-
ral resolution, we estimated for each temporal resolution the
time at which performance changed. We subsequently calcu-
lated the mean and the standard deviation of these five esti-
mates. A low standard deviation of the estimates would indi-
cate that the temporal resolution only has a small influence on
the temporal estimate and would suggest that the arbitrary
choice of temporal resolution does not meaningfully influence
the temporal estimate extracted from the new time-series. The
temporal resolution for the SMART method is directly deter-
mined by the value for σ, whereas the temporal resolution of
binning methods is determined by the width of the bins, which
is either more or less arbitrarily chosen (hard-limit) or emer-
gent (Vincentizing) given the number of bins and the temporal
distribution of the data. Thus, the temporal resolution for a
certain number of bins does not perfectly match with a single
value for σ. For the SMART method, we ran 1,000 permuta-
tions for each value of σ for each dataset.
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Dataset 1—Fraction correct

The first dataset comes from an experiment that examined the
interplay between feature-based priming and oculomotor cap-
ture (Silvis et al., 2015). They presented participants with a
colored square that participants had to memorize.
Subsequently, two bars with different orientations were pre-
sented. Participants had to make an eye movement to the bar
with a specific orientation. Either the target bar or the
distractor bar matched the color that was memorized. A trial
was classified as correct of the participant made an eye move-
ment to the bar with the correct orientation and incorrect if
they made an eye movement to the bar with the incorrect
orientation. Of interest was the response time for which the
difference in performance between the target match and
distractor match trials disappeared. The data are analyzed
using the SMART procedure for determining differences

between conditions (see Fig. 3). For the hard-binning method,
we set the lower and upper limits for the hard-limit binning to
100 ms and 500 ms, respectively. Note that the dependent
measure is binary (correct/incorrect) and that there was a third
condition in their experiment which is omitted in our analysis
for the sake of simplicity. The total number of trials used in the
analysis was 4,620.

Dataset 2—Saccade curvature

The second dataset comes from an experiment that examined
saccade curvature in a double-step saccade paradigm.We used
the data from the condition in which the distractor was
displaced during a saccade (merged data from Experiments
1 and 2, as plotted by the dark red curve in Fig. 6 of van
Leeuwen & Belopolsky, 2018). Of interest was the
intersaccadic interval for which the saccade curvature of the

Fig. 4 Results for Dataset 1. Columns 1–3: The proportion correct
saccades as a function of saccade latency when using Vincentizing,
hard-limit bins, and SMART, respectively. Cyan indicates the perfor-
mance of the distractor match condition and dark red indicates the per-
formance of the target match condition. Vertical error bars and shaded
areas indicate the 95% confidence intervals. Horizontal error bars indicate
the standard deviation of the mean time for each bin across participants.
The number in the upper right corner indicates the number of bins or the
value for σ. The asterisks in Columns 1 and 2 indicate bins that differ
significantly between conditions at p < .05, Bonferroni corrected. In
Column 3, the black lines indicate time points at which the two conditions
differ significantly from zero, and asterisks indicating which clusters are

statistically significant. The dark-gray shaded area is the estimated num-
ber of trials per millisecond (right axis), for the target match condition.
The light-gray shaded area (completely occluded) is the estimated number
of trials per millisecond (right axis) for the distractor match condition.
Estimated with the same kernel size as the one used for the SMART
procedure. Column 4: The permutation distribution between conditions.
The blue histogram shows (on a logarithmic scale) the frequency of the
sum of t values of clusters in the permuted time-series. The vertical red
line indicates the 95th percentile for the permuted time-series. The verti-
cal black lines indicate the sum of cluster t values in the nonpermuted
time-series. (Color figure online)
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second saccade changed sign. This dataset was analyzed using
the SMART procedure for determining differences from base-
line. For the hard-binningmethods, we set the lower and upper
limits for the hard-limit binning to 100 ms and 300 ms, re-
spectively. Note that saccade curvature is a continuous mea-
sure and the baseline is zero saccade curvature. The total num-
ber of trials used in this analysis was 23,968.

Results

Dataset 1—Fraction correct

Dataset 1 was used to demonstrate the analysis of a within-
participants experiment with permutation testing between
conditions. In the original results, the target match condition
and the distractor match condition show the largest difference
at early saccade latencies and then slowly converge at later
saccadic latencies (Silvis et al., 2015). The goal of the present
analysis is to determine at what saccadic latency the two con-
ditions no longer differ from each other.

As expected, all three methods replicate the findings by
Silvis et al. (2015): The target match conditions shows con-
tinuously high saccade accuracy for all saccade latencies,

while the distractor match conditions shows significantly low-
er saccade accuracy when saccade latency is short and high
saccade accuracy when saccade latency is long (see Fig. 4).
While the overall patterns look relatively similar between the
methods, the SMART method again clearly shows a more
reliable (less variable) temporal estimate across the different
temporal resolutions (see Fig. 6a and Table 1).

Dataset 2—Saccade curvature

Dataset 2 was used to demonstrate the analysis of one-
sample testing with permutation testing against baseline.
The original paper showed at what intersaccadic interval
saccade curvature shifts from curvature away from the
predisplaced distractor location (positive curvature) to
curvature away from the displaced distractor location
(negative curvature). Thus, one measure is of particular
interest: the estimated switch time between positive and
negative curvature. This time is estimated as the center
point between the offset of positive curvature and the
onset of negative curvature. The offset of positive curva-
ture was defined as the last bin/time point with signifi-
cant positive curvature. The onset of negative curvature
was defined as the first bin/time point with significant

Fig. 5 Results for Dataset 2. Columns 1–3: Saccade curvature as a
function of the intersaccadic interval when using Vincentizing, hard-
limit bins and Gaussian smoothing, respectively. The shaded gray area
is the estimated number of trials per millisecond (right axis), estimated

with the same kernel size as the one used for the SMART procedure.
Column 4: The permutation distribution against baseline. Further details
as in Fig. 4. (Color figure online)
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negative curvature. The duration between the offset and
onset is considered as the precision of the estimated
switch time.

As expected, all three methods replicate the findings by van
Leeuwen and Belopolsky (2018): The curvature shifts from
curvature away from the original location to curvature away
from the displaced location (see Fig. 5). While the overall
patterns look similar between the methods, the SMARTmeth-
od clearly shows a more reliable (less variable) temporal esti-
mate across the different temporal resolutions (see Fig. 6b and
Table 1).

The offset is the estimate of the time when the proportion
correct in Fig. 4 stops being significantly different between
conditions. The switch is an estimate of the moment that the
curvature changes sign in Fig. 5. All values are rounded down
to the nearest millisecond

Discussion

In the present paper, we introduced the SMART method for
analyzing the time-course of response data as an alternative to
the common practices of binning. The SMART method pro-
vides all-in-one solution: It reconstructs a time-series with
high temporal precision and performs statistical analysis on
it. The SMART method returns an event-related time-course,
similar to constructing event-related potential in EEG re-
search. By implementing a method for weighing each recon-
structed data point by the amount of data contributed by each
specific participant, the method is highly suitable for datasets
with large variability in response-time distributions across par-
ticipants. This also assures that the reconstructed time-course
is continuous and without interruptions, unlike previous
implementations (Maij et al., 2010; Maij et al., 2009; Maij,
Brenner, & Smeets, 2011). The SMART method takes an
objective approach to the determination of cluster significance
by implementing cluster-based permutation testing. To our
knowledge, it is the first time that a cluster-based permutation
method (Fahrenfort et al., 2017; Maris & Oostenveld, 2007)
has been adapted for one-sample-per-trial response data.

The temporal resolution when applying Vincentizing dif-
fers between bins, as bins vary in width depending on the
distribution of data for each participant. It is therefore impos-
sible to perfectly match the temporal resolution of the SMART
method to Vincentizing. For hard-limit bins, the limits are set
after the distribution of the temporal variable is known, and

Fig. 6 The temporal estimates of significant differences in Datasets 1 and
2 as a function of the number of bins (for Vincentized and hard bins) or as
a function of the standard deviation (σ) of the Gaussian kernel (for
SMART). a The estimated time when the two conditions (target match
and distractor match) no longer differ from each other, from Dataset 1. b

The estimated saccade curvature switch times, the center point between
the borders of the two significant clusters in Fig. 5, from Dataset 2, with
error bars reflecting the precision of this estimate (see Method section for
details). (Color figure online)

Table 1 Means and standard deviations (SD) of the temporal estimates
for each method depicted in Fig. 6 across different number of bins and
values of σ

Offset in Dataset 1 (ms) Switch in Dataset 2 (ms)

Mean SD Mean SD

Vincentizing 321 21 186 12

Hard-limit bins 339 52 168 5

SMART 329 19 179 4
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then the width of the bins can be determined by dividing the
range of values by the number of bins. As this range differs,
the temporal resolution for a set number of bins differs be-
tween the two datasets we used. For the hard-limit bins in the
first dataset, the corresponding σs are: 66 ms, 50 ms, 40 ms,
33ms, and 28ms, respectively, in the SMARTmethod. For the
hard-limit bins in the second dataset, the temporal resolution
of 3, 4, 5, 6, and 7 bins correspond to a σ of 33 ms, 25 ms, 20
ms, 16 ms, and 14 ms. In the current paper, we choose to keep
the temporal resolution for the SMART method identical for
the analysis of both datasets, showing that the temporal reso-
lution does not depend on the distribution of the data.

We systematically compared the SMART method with
Vincentizing and the hard-limit binning. The SMARTmethod
has several advantages compared to binning. The width σ of
the smoothing kernel has a negligible effect on the temporal
estimates derived from the SMARTmethod as indicated by an
almost flat line in Fig. 6 and by the very low standard devia-
tion across temporal resolutions (see Table 1). In contrast, the
estimates resulting from both binning methods are strongly
affected by the temporal resolution as indicated by the jagged
line in Fig. 6 and the high standard deviation across the num-
ber of bins (see Table 1). Instead of down-sampling the avail-
able data to a few bins, the SMART method can obtain an
arbitrary temporal resolution, only limited by the density of
the data. Any combination of a dependent variable and a con-
tinuous independent variable (e.g., height, age, weight, speed)
can be analyzed using SMART—in other words, it can be
used to analyze any data which would traditionally be binned.
The SMART method was not created to analyze the types of
data which Vincentizing was originally designed for:
participant-specific data distributions such as reaction-time
distributions (Ratcliff, 1979; Vincent, 1912). But we feel it is
important to note that it is theoretically possible to adapt
SMART to this type of data analysis. This can be done by
changing the procedure such that the data are smoothed on
equally sized new time-series (with each interpolated t being
set separately for each participant), which are centered on the
participants mean or median reaction times instead. This ap-
proach would be similar to Vincentizing and would yield a
BVincentized^ temporal pattern. Considering that experimen-
tal psychology research often concerns data which are event
related, one should be wary of using Vincentizing if there is a
large variability in reaction times between participants.

However, there are some notable caveats. The SMART
method does require the researcher to choose an arbitrary σ
for the smoothing kernel. Although we show here that the
choice of σ has a negligible effect on the reconstruction of
the time-course, it does affect the frequency content and noise
level of the reconstructed time-course. The smoothing proce-
dure essentially acts as a low-pass filter. In order to avoid
removing any potential high-frequency information, the
smallest σ value should be used that leads to an acceptable

amount of noise. The more data, the less noise, so for a given
σ, noise will be largest at response times with little data.

Furthermore, it is worth noting that the SMART method
can be used with any kernel of choice (not just the Gaussian
kernel, although it is the most common for this type of anal-
ysis (Boon et al., 2018; Maij et al., 2010; Maij et al., 2009; van
Leeuwen & Belopolsky, 2018). Similarly, the SMART meth-
od is not limited to the sum of t-values statistics for cluster-
based permutation testing or any other test statistic, if deemed
more appropriate, these can be substituted (Maris &
Oostenveld, 2007).

In the present paper, we presented the SMART method—a
novel approach for analyzing response data as a time-series.
We provide tools for reconstructing the time-course with a
higher temporal resolution compared to traditional methods
of binning data. We also provide tools for performing statisti-
cal analysis on the reconstructed time-series. This powerful
and flexible method can be applied to any type of one-
sample-per-trial data as long as the independent variable is a
continuous measure. We hope that the SMART method will
become a new standard in analyzing response data.
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