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1. Introduction

Virtual reality (VR) technology has advanced considerably in 
recent years and the number of assistive devices available for 
physical rehabilitation has been steadily growing. VR technol-
ogies for rehabilitation are defined as ‘any interaction (physical 
or cognitive) in real-time in an artificial environment gener-
ated by a computer or a mobile device that appears and feels 
similar to real-world objects and events’ [1]. In a VR application 
for rehabilitation, movements of the body are usually tracked 
by a motion-tracking device and projected onto a computer or 
large screen so that the individual can interact with virtual 
objects. Despite the promised advantages of VR applications 
to enhance sensorimotor recovery after musculoskeletal and 
neurological injury or disease, there are some important draw-
backs for its use as an adjunctive rehabilitation intervention.

VR technologies hold considerable promise to improve 
sensorimotor rehabilitation outcomes through the implemen-
tation of ecologically valid, intensive task-specific training, 
linked to better recovery [2]. VR has the added benefit of 
enhancing the engagement of the user, for instance by allow-
ing for gamification that may increase motivation for training 
(e.g [3]). It furthermore promises to do so in a cost-effective 
way although this may vary depending on the application 
platform and method of delivery [4]. Indeed, while the cost 
benefit of the integration of VR in rehabilitation may be 
promising, few studies have specifically addressed this ques-
tion [4]. Several reviews have suggested that VR as an adjunct 
treatment modality, specifically in stroke rehabilitation, has 
already partially met some of these promises [5].

Due to the promise of VR, there has been a growing number 
of virtual assistive devices developed worldwide, incorporating 
innovative technological advances for physical rehabilitation of 
mobility and/or movement disorders due to aging or disease. 
These include platforms such as telerehabilitation (i.e. exercise 
interventions delivered remotely from the clinical environment 
via telecommunication technology), augmented reality (i.e. the 
superposition of virtual digital images onto the physical environ-
ment, such as virtual obstacles to step over which are projected 
onto the physical floor) and mixed reality that can include both 
virtual and physical objects projected either in a virtual or 

physical environment. The advantage of VR is that it allows 
activities to be created that address a wide variety of sensorimo-
tor disorders, permits practice of activities in a safe and con-
trolled environment, can provide flexible reward and error 
feedback to enhance motor learning and offers a motivating 
and rewarding environment to encourage learner engagement 
and interest. Accumulating evidence suggests that virtual reha-
bilitation provides additional possibilities both in and out of 
clinical settings via telerehabilitation for individuals to improve 
sensorimotor recovery after central nervous system injury or 
disease by offering more opportunities for intensive task- 
specific practice.

However, there are some downsides to the use of VR. Aside 
from technical and economic constraints that limit the uptake of 
VR into clinical practice [6], there are additional psycho- 
neurophysiological considerations. VR replaces natural sensory 
inputs that guide movement with computer-generated signals. 
This alters the perceptual environment, since virtual signals may 
be missing or may be different from natural ones, and therefore 
may introduce uncertainty about object location or orientation 
[7]. These perceptual alterations include unnatural or conflicting 
depth cues (e.g. vergence-accommodation conflict [8]), limited 
field of view, missing or inaccurate haptic information, distor-
tions of space, and small rendering lags due to the artificial 
presentation of egocentric distance cues in virtual environments. 
Are such erroneous and/or conflicting signals a problem? One 
might argue that putting on prescription glasses also leads to 
some erroneous visual cues. Why would the erroneous cues be 
more problematic in VR than in the real world?

The reason that erroneous or conflicting visual cues are not 
a problem in real life is that in the physical world, we receive 
haptic information when interacting with the environment, 
particularly for tasks involving object manipulation. This infor-
mation can be used to deal with conflicts between visual cues 
[9]. Haptic spatial information is related to the tactile inputs 
from the periphery and efferent signals from the cortex based 
on a distributed neural network [10]. Haptic perception of 
object shape from the relative positions of cutaneous mechan-
oreceptors in the hand critically guides the ability to interact 
with objects and requires the integration of cutaneous and 
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proprioceptive signals. This means that the presence of haptic 
information is essential for normal performance. For instance, 
in grasping, consistent haptic feedback is required for natural 
scaling of movement parameters to object properties [11,12], 
as illustrated by the lack of normal grasping behavior of 
a patient with object agnosia without haptic feedback [13]. 
Individuals with lesions affecting the integration of sensory 
information struggle to perform even the most basic activities 
of daily living, like picking up a cup or using a toothbrush [14]. 
Indeed, the congruency between sensory information and 
action plays an important role in neuroplasticity and the 
restoration of motor functions [15].

Most current VR systems do not yet accurately incorporate 
realistic haptic information of the interaction of the body with 
the environment. This is particularly important for improving 
function of the upper limb, but may be less relevant to whole- 
body action such as retraining trunk stability and locomotion. 
Diminished haptic information leads to differences in reach-to- 
grasp kinematics in VR compared to physical environments. In 
line with our previous arguments, reaching movements in 
a haptic-free VR environment differ from normal movements. 
They are slower, have longer deceleration times and hand 
aperture timing and amplitudes are altered [16]. These differ-
ences persist but are less evident even when some haptic 
information is provided [17]. The persistence of alterations in 
reach-to-grasp movement kinematics in VR means that while 
VR technologies offer innovative opportunities for learning 
motor skills in more flexible ways, a significant gap still exists 
in our understanding of how skills performed in VR differ from 
those in the real world and how this affects the rehabilitation 
goal of reducing upper limb motor impairment.

Another downside of the use of VR is what happens after 
exposure, as there are reports of reduced postural stability 
after the use of VR. This decrease in stability is presumably 
due to reduced reliance on visual information for postural 
control after VR exposure [18]. Reduced stability might lead 
to falls, which would interfere with the rehabilitation process. 
It is unclear to what extent this is due to the sensory conflicts 
that we have discussed above, or due to the large-scale visual 
motion that is present in VR games and flight simulators, but 
to a lessor extent in VR rehabilitation applications.

Traditional training approaches are based on the notion 
that motor behavior can be improved simply by repetitive 
practice of the same or multiple movements [2,19]. However, 
the ‘more is better’ approach fails to account for the fact that 
repetitive practice of the ‘wrong movements’ leads to ‘bad 
neuroplasticity.’ There are several reasons why movements 
might be incorrect when training using VR. One reason is 
that the initial response to a deficit may be the use of undesir-
able (i.e. compensatory) movement patterns [20]. Another 
reason is that the training in VR itself will induce undesirable 
movements, for instance due to the altered visual environ-
ment and the lack of haptic feedback. Thus, since the natural 
response to disability is to learn new ways of accomplishing 
daily activities, i.e. to develop compensatory behaviors, with-
out proper physiological cues, repetitive practice may likely 
only reinforce the wrong movements [21]. Reinforcement of 
these movements in VR may thus interfere with true motor 
recovery of natural movement patterns [22].

Indeed, while most physical training interventions are 
based on established principles of motor learning and neural 
plasticity [23], recovery potential depends on remediating an 
individual’s specific motor impairment – an approach called 
impairment-oriented training [24]. In this approach, the focus is 
on diminishing motor impairment i.e. recovering the ability to 
produce active movement in specific joint ranges by repairing 
the underlying motor control deficit [25]. Impairment-oriented 
training depends on the ability of the learner to recognize and 
adapt specific joint coordination during the performance of 
a task. This is true of training in both a physical and a virtual 
environment and is accomplished through proprioceptive and 
tactile feedback during movement.

2. Conclusion

Despite the promise of VR to augment sensorimotor rehabili-
tation outcomes, the present technology does not completely 
reproduce the perceptual and haptic qualities of the real 
world that are necessary for meaningful interactions with the 
environment. Thus, when the goal of the rehabilitation inter-
vention is to diminish sensorimotor impairment, we should 
exercise caution when implementing VR for sensorimotor 
recovery until all relevant visual and haptic information can 
be adequately provided by the technology. However, when 
the goal is to increase general mobility through non goal- 
directed exercise, VR may be an effective intervention.

3. Expert opinion

Virtual reality technology has developed as a promising 
adjunctive therapy for rehabilitation and has been shown 
to increase the ability to deliver more intensive and mean-
ingful training for people with mobility and sensorimotor 
disorders. Some benefits include greater motivation to 
engage in practice, improved clinical outcomes and greater 
use of the impaired limb or limbs. However, a drawback of 
current virtual reality technology is that it does not com-
pletely reproduce the perceptual and haptic requirements 
for meaningful interactions present in the natural environ-
ment, especially for upper limb goal-directed actions. Thus, 
retraining in such virtual environments may lead to learn-
ing non-desirable movement patterns that may interfere 
with true motor recovery of normal motor actions. 
A greater understanding of the effects of sensorimotor 
retraining in an altered perceptual environment is needed 
before we can fully adopt current virtual reality technology 
as a primary training environment. Technology will 
advance, but we are unsure how close we are to the 
moment that all limitations we discussed above for redu-
cing sensorimotor impairment will be remediated, particu-
larly for individuals with different pathophysiologies. 
Future progress in technology development, as well as its 
accessibility and cost-effectiveness, should focus on 
improving the incorporation of pertinent visual and haptic 
information to derive the most meaningful benefits for 
ecologically-relevant sensorimotor recovery.
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