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of reinforcement learning that relies on the exploitation 
of successful motor commands and exploration of other 
motor commands following failure. For instance, with 
binary reward feedback humans can learn to adapt reach 
direction (e.g. Izawa and Shadmehr 2011; Therrien et al. 
2016), can learn to produce a certain force (van der Kooij 
et al. 2023), and can learn to reach with a certain curva-
ture and direction (Chen et al. 2017; Dam et al. 2013). 
As exploration underlies reward-based motor learning, 
understanding the mechanisms by which humans learn 
to explore is important for understanding motor develop-
ment (Lee et al. 2022) and for designing adequate para-
digms for rehabilitation (Krakauer and Cortes 2018) and 
teaching (Bonawitz et al. 2011; Schaik et al. 2020). How-
ever, current understanding of exploration in reward-
based motor learning is based on a key assumption that 
has not been challenged yet.

A key assumption underlying current computational 
models of reward-based motor learning is that explora-
tion is a stochastic process in which exploration is added 

Introduction

Humans can learn one-dimensional motor tasks, such as 
reaching in one direction, based on binary reward feed-
back about success and failure provided for instance with 
scored points for success and absence of scored points 
for failure. Such ‘reward-based motor learning’ is a form 
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Abstract
Humans can learn various motor tasks based on binary reward feedback on whether a movement attempt was successful 
or not. Such ‘reward-based motor learning’ relies on exploiting successful motor commands and exploring different motor 
commands following failure. Most computational models of reward-based motor learning have formalized exploration as 
a random process, in which on each trial a random draw is taken from a normal distribution centred on zero. Whether 
human motor exploration is indeed random from trial to trial has not been tested yet. Here we tested in a force production 
task whether human motor exploration is random. To this end, we compared the proportion trial-to-trial force changes in 
the behavioural data that have the same sign to the proportion expected in random exploration. One group of participants 
practiced with an adaptive reward criterion, which keeps rewarded performance close to current performance, and the 
other group practiced with a fixed reward criterion in which current performance can be far from reward performance. In 
both groups, we found a proportion same-sign changes larger than predicted. In the Adaptive group, both the learning and 
proportion same-sign changes were consistent with model simulations for low values of random exploration, whereas in 
the Fixed group both the learning and proportion same-sign changes were inconsistent with model simulations based on 
random exploration. This suggests that some form of non-random motor exploration contributes to reward-based motor 
learning.

Keywords Exploration · Reward · Motor learning · Reinforcement learning

Received: 15 October 2024 / Accepted: 30 March 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

The sign of exploration during reward-based motor learning is not 
independent from trial to trial

Katinka van der Kooij1 · Jeroen B. J. Smeets1 · Nina M. van Mastrigt1,2 · Bernadette C. M. van Wijk1,3

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-025-07074-z&domain=pdf&date_stamp=2025-4-10


Experimental Brain Research         (2025) 243:117 

to a target estimate (Fig. 1). The exploration on a trial is 
randomly drawn from a normal distribution with a certain 
variability centered on zero and is thus independent across 
trials (e.g. Cashaback et al. 2019; Dhawale et al. 2019; 
Izawa and Shadmehr 2011; Sutton and Barto 2018; Therrien 
et al. 2018). We refer to this formalization of exploration, 
which may also be called ‘independent, identically distrib-
uted samples’ (Castillo et al. 2024) as ‘random exploration’. 
While several studies have assessed how the amplitude 
of exploration is controlled (Dhawale et al. 2019; Roth et 
al. 2023; Therrien et al. 2018), the assumption of random 
exploration remains to be tested.

If exploration deviates from random exploration, e.g. by 
showing interdependence between trials, this has implica-
tions for the quantification of exploration, which is currently 
based on the amplitude of variability (Pekny et al. 2015; van 
Mastrigt et al. 2021) or on model fits with random explo-
ration (Hill et al. 2024; Therrien et al. 2016). If explora-
tion involves both variability and interdepence across trials, 
studies measuring exploration only by variability might 
erroneously conclude that a participant who shows little 
variability with high interdependence across trials explores 
less than a participant who shows large variability with no 
interdependence across trials.

There are reasons to expect that exploration deviates from 
random exploration. While random exploration has the poten-
tial for motor learning even when the current performance is 
far from rewarded performance, learning might be unreliable 
and slow because extreme values are rare in the normal distri-
bution. Hence, subsequent explorations will only rarely bring 
performance far from the current performance. A study with 
rats showed that the amplitude of variability due to explora-
tion might be scaled to a longer reward history, resulting in 
large explorations when reward is absent for long while keep-
ing explorations small when reward is frequent (Dhawale et al. 
2019). This mechanism might overcome some limitations of 
random exploration, but it has not been tested yet whether such 
a mechanism facilitates human learning when performance is 
far from rewarded performance.

The limits of random exploration might have received 
little attention because experimental paradigms have defined 
success with a criterion that allows for learning with random 
exploration. In daily life, the constraints posed by the environ-
ment, such as the size and position of an apple in the tree when 
grasping an apple, set the criterium within which a movement 
is successful or not. In experimental paradigms, the experi-
menter defines success by rewarding certain movements. To 
facilitate learning, most studies start by rewarding a wide range 

Fig. 1 Rationale. a) In current models of reward-based motor learning, 
the planned force is a combination of a target estimate (in this case a 
to-be-applied force F) and exploration (a deviation of the target esti-
mate that is randomly sampled from a normal distribution centered on 
zero). The target estimate and the amplitude of exploration are updated 

based on reward feedback. b) Illustrations of the two reward criteria. 
The adaptive reward criterion depends on performance (top panel), 
whereas the fixed reward criterion is independent of performance (bot-
tom panel)
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of movements and narrow this range as performance improves 
(Fig. 1.b). The narrowing of the reward criterion occurs either 
by fixed small steps (Holland et al. 2018; Izawa and Shadmehr 
2011; van Mastrigt et al. 2023) or based on how quickly the 
learner improves (Therrien et al. 2016, 2018; van der Kooij et 
al. 2018; van der Kooij and Smeets 2019). The latter adaptive 
procedure is also called ‘closed-loop’ feedback (Therrien et al. 
2016) or ‘shaping’ (Skinner 1974). Consistent with the idea 
that random exploration suffices for learning when the current 
performance is close to being rewarded but not when current 
performance is further from being rewarded, such an adaptive 
reward criterion has been found to enhance the rate of learning 
relative to a fixed (‘open loop’) criterion (Therrien et al. 2016).

It is not unlikely that human exploration deviates from 
random exploration. First, variability in motor and cognitive 
tasks shows autocorrelation in which subsequent actions posi-
tively depend on each other (Castillo et al. 2024; van Beers 
et al. 2013). However, humans explore especially following 
failure (Pekny et al. 2015; Therrien et al. 2016; Uehara et al. 
2019) and following failure, the autocorrelation in variabil-
ity is reduced (Roth et al. 2023). Second, explicit processes 
contribute to reward-based motor learning (Codol et al. 2018; 
Holland et al. 2018; van Mastrigt et al. 2023). These explicit 
processes might involve strategies such as sampling explora-
tion from range (see Supplementary S4) rather than a normal 
distribution, or a sweeping strategy, in which one subsequently 
increases the exploration in one direction and reverses this 
direction of exploration when the boundary of a search space is 
reached. Finally, exploration might be directed toward areas in 
the search space where most information can be gained (Wil-
son et al. 2021). Hence, exploration might deviate in several 
ways from random exploration.

The aim of the current study is to test the hypothesis 
that exploration during reward-based motor learning devi-
ates from random exploration. To this end, we use a sten-
cil-based force production task performed on a tablet (van 
der Kooij et al. 2023) in which we measure exploration 
as trial-to-trial changes in force. To assess the structure of 
the exploration following failure, we compare the propor-
tion trial-to-trial changes with the same sign (either more 
or less force) which we refer to as ‘same-sign changes’ to 
the proportion expected in random exploration. We predict 
that the proportion same-sign changes deviates from what is 
expected based on random exploration.

Methods

Participants

In total 61 participants participated in the study. They were 
all students at the Faculty of Behavioural and Movement 

Sciences of the Vrije Universiteit Amsterdam or friends of 
students. The participants were divided into two groups that 
practiced with a different reward criterion. In the Adaptive 
group (N = 30, age 22 ± STD 3 years, 20 female, 8 male, 2 
non-specified), the reward criterion was adapted to the par-
ticipant’s performance whereas in the Fixed group (N = 31, 
age 21 ± STD 3 years, 23 female, 6 male, 2 non-specified), 
the reward criterion was fixed. The data of 6 of the 30 partic-
ipants in the Adaptive group 24 were measured specifically 
for the current study; the other 24 were measured using a 
slightly different protocol in a previous study (van der Kooij 
et al. 2023). All participants in the Fixed group were mea-
sured in the current study. Ethical approval for both studies 
was provided by the local ethics committee.

Task

The task was the same as in a previous study (van der Kooij 
et al. 2023), except for the addition of a fixed reward crite-
rion and the task being administered in the lab rather than at 
home. Participants performed a stencil-based task in which 
they viewed 1 cm diameter circular targets (random colour 
other than red or green) at the centre of a laptop screen and 
made erasing-like movements on a Wacom tablet (Intuos 
Medium, 4096 pressure levels) positioned on the table 
(Fig. 2) with a stylus that could register the force on the tip 
of the pen up to about 50 N. The movement of the stylus was 
displayed on the computer screen with the standard cursor. 
We report forces in normalized Wacom units (ranging from 
0 to 100), rather than Newtons as part of the data was col-
lected at home without supervision, so we are not sure about 
the tablet settings used. The participants were instructed to 
move the pen in such a way that it ‘erased’ the entire tar-
get area. They were furthermore instructed to perform the 
erasing movement with the correct force (randomly chosen 
from a range of 20–80 Wacom units); they had to find this 
force through binary reward feedback.

To start a trial, the participant moved the cursor to a start 
position (diameter 0.1 cm, 1 cm below the edge of the tar-
get). Once the cursor was in the start position, the target 
appeared, and the participant could move toward the target 
and start erasing. Once the cursor hit the target, we started 
recording the force with which the participant made the 
erasing movement. After 1.5 s we provided reward feedback 
based on the applied force: the mean force during the last 
second of the erasing movement. If a trial was rewarded, we 
coloured the target green. Otherwise, it turned red.

The reward criterion (range of forces that were rewarded) 
differed between the two groups. Participants in the Fixed 
group were rewarded if the applied force was within 5 
Wacom units from the target force (the ‘fixed criterion, 
Fig. 1.b’). Participants in the Adaptive group were rewarded 
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For both groups, we considered the target force to be 
found once the applied force satisfied the fixed reward crite-
rion in eight out of ten trials. To evoke exploration through-
out the 300-trial task, we used a new target force once a 
target was found or had been attempted 100 times. The 
change of target force was communicated by a new random 
colour for the target. The new target force was randomly 
chosen, but such that it differed at least 5 Wacom unit from 
the previous target force, so that the old and new range of 

both when the applied force was within the fixed criterion 
and when the applied force was within an adaptive reward 
criterion. This adaptive reward criterion was based on force 
errors: the absolute difference between the applied force and 
the target force. If the force error in a trial was smaller than 
the 40% percentile of the errors in the previous ten trials, the 
trial was rewarded. For the first ten trials, participants were 
only rewarded based on the fixed criterion. To end the trial, 
the participant returned the cursor to the starting position.

Fig. 2 Task. a) Picture of a participant performing the task. The lower-
left inset shows the start position (yellow) and the target circle (red) 
when receiving feedback on failure. b) Trajectory of the movement of 
the stylus during a single trial (dashed line) sampled at 16 ms inter-
vals. The QR code can be scanned to view the video that was used to 

instruct the participants about the task. c) Example data and reward 
criterion for a 300-trial session of a participant in the Adaptive group 
(top row) and for a participant in the Fixed group (bottom row). Dots 
are the registered forces during each trial; filled dots correspond to 
rewarded trials. The green area corresponds to the reward criterion
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ACB, BAC, BCA, CAB, CBA), which are equally prob-
able. For these six orders, only two orders (ABC and CBA) 
involve repetitions of the sign of trial-to-trial changes, so a 
probability of 1/3. This is especially true with a fixed reward 
criterion, which is often far from current performance and 
will therefore define all possible trial-by-trial changes as 
failures (see Fig. 1.b). An adaptive reward criterion might 
affect the probability for the six orders to be selected as a 
failure. For instance, when the target is larger than the cur-
rent performance, the trial-by-trial changes in the CBA 
order are more likely to be classified as successes than the 
ABC order (see Fig. 3.c).

We are interested in the overall quality of learning and 
therefore used a measure that combines the rate and the 
amount of learning (van Mastrigt et al. 2021). To quantify 
learning for each target force, we first smoothed the applied 
force on its corresponding trials by taking a moving aver-
age with a window containing three trials before and after, 
hence 7 trials in total (Fig. 3.a). For the first and last three 
trials, the window is asymmetric, so the smoothed force on 
the first trial (initial error) is the average of the first four 
forces and the smoothed force on the last trial is the average 
of the last four errors. We subsequently determined the force 
error ( e) as the absolute difference between the (smoothed) 
applied force and the target force. Learning of each target 
force was determined as the force error on the first trial (the 
baseline error) to a target minus the average force error on 
the subsequent trials to the same target force. This measure 
is not only larger if the final amount of learning is larger, but 
also if learning is faster. To obtain one measure of learning 
across all targets of a session, we divided the total learning 
across all targets by the total baseline error across all tar-
gets. With this method, a value of one represents complete 
learning, a value of zero represents no change in perfor-
mance, and negative learning values represent a worsening 
of performance.

To check whether the average force difference to learn 
was comparable across groups, we calculated the force dif-
ference to learn as the average force error on the first trial 
for a target.

Statistical analysis

We predicted that, in both groups, the proportion of 
same-sign changes equals 1/3 as predicted by random 
exploration. To test this prediction, we used a two-sided 
one-sample t-test on the proportion of same-sign trial-
to-trial changes. To explore whether the proportion 
same-sign changes in the behavioural data was related 
to learning, we performed a Spearman rank-order corre-
lation test on the proportion same-sign changes and the 
learning in each group.

force that was rewarded according to the fixed criterion did 
not overlap. The task lasted 20 to 30 min. Following each 
resolved target, the participant indicated self-reported moti-
vation using a Quick Motivation Index (QMI, van der Kooij 
et al. 2019). On a slider ranging from ‘not at all’ to ‘very 
much,’ participants answered two questions: (1) How much 
did you enjoy the task until now? (2) How motivated are 
you to continue? Self-reported motivation was measured as 
the mean QMI score across targets.

Procedure

Participants first received information on the experimental 
procedure and provided informed consent. Next, they were 
instructed on the task with an instruction video  (   h t t p s : / / y o u t 
u . b e / u d a 3 K s N r D 8 g     ) . For the current data collection, partici-
pants performed the task in the lab whereas in the previous 
study that was conducted during the COVID-19 pandemic, 
participants (24 participants in the Adaptive group) per-
formed the task at home and were instructed in a video call.

Each participant performed 300 trials in a single session 
and thus experienced at least three different target forces. 
Participants received a break midway through the experi-
mental phase, indicated by an instruction text. After two 
seconds, the next target reappeared automatically. Partici-
pants were free to decide when they initiated a movement 
to the target.

Data analysis

The aim of the data analysis was to quantify the exploration 
and learning. All data and code for the data analysis have 
been made publicly available at the Open Science Founda-
tion: https://osf.io/et8qg/.

To quantify the sign of exploration, we used trial-to-trial 
changes in the applied force after failure (Fig. 3). These were 
calculated as the difference in the applied force between a 
trial (t) and the next trial (t + 1). A same-sign change was 
defined as a change in the same direction (either more or 
less force) for two consecutive failed trials. For trials after 
which the target force changed and participants had to rate 
their motivation, we did not calculate trial-to-trial changes. 
The proportion same-sign changes was calculated across all 
failure sequences longer than one trial. The first failure did 
not count as an opportunity for a same-sign change as we 
calculated changes relative to the previous failure (Fig. 3.c).

Based on random exploration, the expected proportion 
same-sign explorations relative to the target estimate is 
0.5. For trial-to-trial changes, the probability for same-sign 
changes is 1/3. We use an example to explain the underly-
ing logic. If we draw three values for a force (A, B, C with 
A > B > C), these values can be presented in six orders (ABC, 
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In the Therrien2018 model, we implemented our task by 
defining an applied force ( F t) that is the sum of a target 
estimate ( X), exploration ( η ), and sensorimotor noise ( m

): Ft = Xt + η t + mt 
All models formalize exploration and motor noise in a 

trial as a random draw from a normal distribution, centred on 
zero, with standard deviation ( σ η  and σ m respectively):

η t = N(0, β (R )σ η )

mt = N(0, σ m)

The variability due to exploration depends on the previous 
success and failure and can be learned from, whereas the 
variability due to motor noise does not depend on feedback 
and cannot be learned from. The variability due to explo-
ration ( σ η ) depends on the successes and failures in the 

As motivation has been found to depend on the reward 
rate (van der Kooij et al., 2021) and motivation might affect 
motor variability (Codol et al. 2020; Manohar et al. 2015), 
we compared the reward rate and self-reported motivation 
between groups using Mann-Whitney U rank-sum tests.

Model simulations

We used model simulations to check whether the propor-
tion same-sign changes following failure is indeed 1/3 in 
the presence of learning based on performance-dependent 
feedback. For this, we used four different models that have 
been proposed by others (Cashaback et al. 2019; Dhawale et 
al. 2019; Roth et al. 2023; Therrien et al. 2018). As the basic 
structure of the models is the same, we report the details of 
the earliest model (Therrien et al. 2018) here and provide the 
details of the other models in the Supplementary Methods.

Fig. 3 Data analysis. a) Forces on individual trials (circles) classified 
as failures and success as a function of trial number for a learner simu-
lated with the Roth23 model. The horizontal lines indicate the target 
force at each trial and the curve represents the smoothed force that was 
used in the calculation of learning. b) The expected proportion same-

sign changes relative to the target estimate ( F ), is 0.5. We measured 
same-sign changes as the sign of the trial-to-trial change in the applied 
force (yt). c) Illustration of the analysis of the repetition (‘rep’) of the 
sign of trial-to-trial change following failure for the three exploration 
draws (A, B, and C) with A > B > C
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σ η ,R =
√

aσ total, group
2σ m,R =

√
(1 − a)σ total, group

2

As the learning rate does not influence exploration following 
failure, we based the learning rate on the values reported in 
the literature. The learning factor we used for the Roth2023 
model was α =0.98 (Roth et al. 2023), for the Casha-
back2019 model α = 0.4 (Cashaback et al. 2019), and for 
the Dhawale model α = 0.23 (Dhawale et al. 2019). For 
the Therrien2018 model, we used a variability scaling factor 
(β ) of 0.2 (Therrien et al. 2018), for the Cashaback2019 
and Roth2023 models we used a variability scaling factor of 
zero and for the Dhawale2019 model we used the variability 
scaling function which can be found in the Supplementary 
Material S1.

Additional model simulations with learning rates vary-
ing between 0 and 1 are reported in the Supplementary 
Material (S3). To statistically test whether the models can 
explain the proportion same-sign changes and learning by 
a certain combination of learning rate and exploration frac-
tion, we statistically compared the median proportion same-
sign changes and learning of the model simulations for each 
value of exploration fraction to the behavioural data using 
two-sided sign rank tests. We report the range of exploration 
fractions with which the behavioral data do not significantly 
differ from the simulation median.

Results

Behavioural data

As expected, the reward rate differed between the Adap-
tive and Fixed group (Fig. 4a). The mean reward rate for 
the Adaptive group was 0.50, clearly larger than the mean 
reward rate for the Fixed group (0.21). Despite this differ-
ence in reward rate, motivation did not significantly dif-
fer between groups (U = 880, z = 1.6, p = 0.12; Fig. 4b). As 
the target forces were randomly chosen, we also checked 
whether the two groups experienced comparable force dif-
ferences to learn. We defined the force difference to learn 
as the force error on the first trial of a new target force. The 
mean force difference to learn ± standard deviation was 
48.6 ± 17.3 for the Adaptive group and 50.9 ± 18.5 for the 
Fixed group. As force was measured within the Wacom 
detection range, we checked the percentage of trials on 
which the lower and upper limits of the force range were 
hit. In the Adaptive group, the bounds of the Wacom detec-
tion range were hit on 1% of trials and in the Fixed group, 
the bounds of the Wacom detection range were hit on 3.5% 
of the trials.

The results confirmed our prediction that in both groups 
the proportion same-sign trial-to-trial changes deviated 

previous trial(s), with a variability scaling factor β (R) that 
equals one without reward and is less than one after reward 
(see Supplementary Material S1 for detail)

Following reward (R = 1), the target estimate is updated 
with learning rate ( α ); without reward (R = 0) it remains 
unchanged:

Xt+1 = Xt + α Rtη t

The models further differ in whether the target estimate is 
updated with the rewarded exploration only (Roth et al. 
2023; Therrien et al. 2018), a combination of motor noise 
and exploration (Cashaback et al. 2019), or with a reward 
prediction error (Dhawale et al. 2019). Additionally, mod-
els can update the target estimate following reward only 
(Cashaback et al. 2019; Roth et al. 2023; Therrien et al. 
2018) or also following failure (Dhawale et al. 2019). Cru-
cially, all models implement exploration as a random draw 
from a normal distribution with a zero mean.

Comparison of the models to the data

We simulated our experiment for each of the four models 
and for both reward criteria (adaptive and fixed) for 1000 
learners. The simulated target force and reward feedback 
were determined in the same way as we did for the human 
participants. Also, the applied force ( F ) we used to deter-
mine the exploration and the learning was capped to the 
Wacom detection range (0–1). We assumed that our partici-
pants were not aware of this range and therefore we did not 
cap the target estimate ( X) in the simulations.

Each learner started using an aimed random value 
between zero and one hundred (the full range of possible 
normalized forces). The free parameters in the models 
are the width of the distributions from which exploration 
( σ η ,R) and motor noise ( σ m) are drawn (Cashaback et al. 
2019; Dhawale et al. 2019; Roth et al. 2023; Therrien et al. 
2018), learning rate α  (Cashaback et al. 2019; Roth et al. 
2023) and the variability scaling factor ( β ).

As it can be assumed that the total variability is the sum 
of variability due to exploration and variability due to motor 
noise (van Mastrigt et al. 2021), we first estimated the total 
variability for each group ( σ total,group) from the data. For 
each participant, we estimated the total variability based on 
the trial-by-trial changes following failure as in (van Mas-
trigt et al. 2021). This variability was averaged per group to 
obtain the group total variability ( σ total,group). The stan-
dard deviation in the applied force was 5.67 for the Adaptive 
group and 7.86 for the Fixed group. For each of the 1000 
simulated learners in the Adaptive and Fixed group, we var-
ied the exploration fraction ( a) in this variability from 0 to 
1 in steps of 0.1 (Eq. 1.5).

1 3

Page 7 of 12   117 



Experimental Brain Research         (2025) 243:117 

targets. Figure 4 depicts these participants with filled circles 
and shows that they did not deviate from the other partici-
pants in the motivation (Fig. 4.b) or proportion of same-sign 
changes (Fig. 4.c). We exploratively compared the learning 
and number of targets resolved between groups with two-
sided Mann-Whitney U tests and found that the both the 
median learning and number of targets resolved did not 
differ between groups (U = 983, p = 0.15; U = 918, p = 0.62 
respectively). In Supplementary Material S2 we show two 
alternative measures of learning – the number of targets 
needed to resolve a target and the absolute learning - and 
show that these measures also do not differ between groups.

Model simulations

With the adaptive reward criterion (Fig. 5.a), the propor-
tion same-sign changes in the behavioural data could 
be explained by relatively low exploration fractions 
(Roth2023: 0-0.3, Therrien18: 0-0.4, Cashaback19: 0-0.2 
and Dhawale19: 0-0.2). With the fixed reward criterion, the 
proportion same-sign changes in behavioural data could not 
be explained by any fraction of exploration. The models can 

from the proportion predicted by random independent 
exploration. The mean proportion same-sign trial-to-trial 
changes was higher than 1/3 in both the Adaptive group 
(0.40 ± SEM = 0.01, t = 4.58 p < 0.001) and in the Fixed group 
(0.41 ± SEM = 0.01, t = 6.15, p < 0.001) (Fig. 4c). We assessed 
whether the proportion same-sign changes was correlated to 
learning (Fig. 4d). This would especially be expected in the 
Fixed group where the rewarded performance could be far 
from the current performance and autocorrelation might be 
needed to hit the rewarded performance. The correlation in 
the Adaptive group was weak and not significantly different 
from zero (rho = 0.17, p = 0.39). The correlation in the Fixed 
group was moderate in size but not significantly different 
from zero (rho = 0.32, p = 0.09). These correlations did not 
change meaningfully when we removed three participants 
learning smaller than − 0.4 (see Fig. 4e).

The median learning for the Adaptive group was 0.44 and 
the median learning for the Fixed group was 0.33 (Fig. 4.e). 
The median number of targets resolved was 5 for both the 
Adaptive group and Fixed group (Fig. 4.f). Six participants 
in the Fixed group did not resolve any target whereas in 
the Adaptive group, only 1 participant did not resolve any 

Fig. 4 Behavioural results. a) The 
design was effective in creating a 
higher reward rate for the Adap-
tive group. b) The motivation did 
not differ between the groups. 
c) The proportion of same-sign 
changes was for both groups 
larger than in random explora-
tion (dashed line). d) There was 
no clear correlation between 
learning and the proportion 
same-sign changes. e) There was 
no evidence that learning differed 
between the two groups. f) The 
number of targets resolved was 
similar for the two groups. Filled 
circles indicate participants who 
did not resolve any targets
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0.2-1, Therrien 18: 0.3-1, Cashaback19: 0–1, and Dha-
wale19: 0.1-1). With the fixed reward-criterion, only the 
Dhawale19 model could explain learning (exploration frac-
tions 0.2–0.3).

Discussion

The aim of this study was to test whether human motor 
exploration deviates from random exploration: taking inde-
pendent random draws from a normal distribution centered 
on zero. To this end, we used a force-control task in which 
participants were rewarded according to either a fixed or 
adaptive reward criterion based on the force with which 
they moved over visual targets. Exploration was assessed 
by measuring the probability that trial-to-trial changes in the 
force would have the same sign.

The behavioural data showed a 0.4 probability of repeat-
ing the sign of exploration (either more or less force) for 
both reward criterion groups. Models of reward-based 
motor learning using random exploration (Cashaback 
et al. 2019; Dhawale et al. 2019; Roth et al. 2023; Ther-
rien et al. 2018) could explain this proportion same-sign 
changes only for the data obtained with adaptive reward 
criterion and only when the amplitude of variability due to 

thus explain the human proportion same-sign changes only 
when an adaptive reward criterion is at play. This is because 
the proportion same-sign changes following failure depends 
not only on the exploration, but also on the classification of 
failure trials by the reward criterion, which tends to classify 
changes in the direction of the target as success and tends to 
classify changes in away from the target as failures. Hence 
certain orders of changes are more likely to be classified as 
consecutive failures than others (see Fig. 3). The effect of 
the classification of failure trials on the proportion same-
sign changes is most pronounced when many of the possible 
trial-by-trial changes within the variability are classified as 
successes (see Fig. 1.a). Hence, the classification effect is 
strongest with the adaptive reward criterion, and low or 
absent with the fixed reward criterion, where the reward 
rate was 20%. We do not fully understand why the propor-
tion same-sign changes reduces with the exploration frac-
tion. Simulations with a learning rate of zero showed that 
the reduction in the proportion same-sign changes was not 
due to learning. Hence, the effect of the exploration fraction 
on the proportion same-sign changes must be caused by the 
relative increase in variability following failure.

For the learning (Fig. 5.b), we found that with the adap-
tive reward criterion, the models could explain learn-
ing using a broad range of exploration fractions (Roth23: 

Fig. 5 Predictions of the four 
models (colour) with interquartile 
range as a function of the explo-
ration fraction. The horizontal 
dashed lines indicate human 
behaviour. a) Median proportion 
same-sign changes. Dashed-dot-
ted lines indicate the prediction 
based on random exploration. b) 
Median learning; the horizontal 
lines indicate no learning
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instance, exploration might be directed toward areas in the 
search space where information can be gained (Wilson et al. 
2021) or a certain number of consecutive failures should be 
required to initiate an exploratory sweeping bout.

Thus, while we show deviations from random explora-
tion, we cannot pinpoint an alternative strategy that explains 
learning and same-sign changes in both reward criterion 
conditions. However, it might be wrong to search for a 
single strategy that explains all behaviour. Humans prob-
ably use multiple strategies in parallel and different learn-
ing strategies might be used in different learning situations. 
Implicit and explicit processes both contribute to reward-
based motor learning (Codol et al. 2018; Holland et al. 
2018; van Mastrigt et al. 2023). The implicit learning might 
involve random exploration whereas the explicit learning 
might involve directed exploration. In this case, studies 
focusing on implicit learning, for instance by using a double 
task, might observe a lower proportion same-sign changes 
than observed in the current study.

Measures of motor exploration have been designed to 
measure random exploration by focusing on the amplitude 
of variability (Wu and Miyamoto 2014), the amplitude of 
failure-induced variability (van Mastrigt et al. 2021) or esti-
mating model parameters (Malone et al. 2023; Therrien et 
al. 2016, 2018). If motor exploration deviates from random 
exploration because trials are interdependent, measures of 
motor exploration shouldreflect this interdependence. This 
could for instanc be achieved by measuring motor explora-
tion as a multidimensional construct which contributes to 
learning through both an amplitude of variability and a tem-
poral structure containing interdependence between trials.

Study limitations

A number of methodological choices deserves further dis-
cussion. First, the two groups differed not only in the reward 
criterion but also in the number of participants tested at 
home instead of in the lab. This might have affected moti-
vation and measurement noise perhaps causing suboptimal 
learning in the Adaptive group. However, motivation in 
the Adaptive group was not found to be lower than in the 
Fixed group (Fig. 2.b). Secondly, we measured exploration 
and learning in a bounded task space of normalized Wacom 
units rather than in Newton. The upper and lower limits of 
the force range were only reached in 2% of the human par-
ticipant trials and also in only 2% of the trials simulated with 
independent random exploration. Model simulations with 
an autocorrelated exploration strategy would frequently 
(18% of trials) drift beyond the boundaries of the task space 
however (see Supplementary S.4). Future studies assessing 
the structure of exploration might explicitly communicate 
the boundaries of a search space or use a task with a circular 

exploration was relatively low compared to the variability 
due to motor noise (Fig. 5.a). The models could not explain 
the proportion same-sign changes for the data obtained with 
the fixed reward criterion (Fig. 5.b). The studied models of 
reward-based motor learning could generate learning with 
the adaptive reward criterion with a wide range of values 
for variability due to exploration, but for the fixed reward 
criterion, only the Dhawale19 model could learn (Fig. 5.b), 
regardless of the learning fraction used (Figure S2).

The higher-than-expected proportion same-sign changes 
with the adaptive reward criterion might be attributed to 
a direction bias in the classification of failure trials by the 
reward criterion which tends to classify changes away from 
the target as failures. With the fixed reward criterion, the 
distance between the target and rewarded performance fre-
quently exceeds the amplitude of variability due to explora-
tion. Hence most trial-by-trial changes will be classified as 
failures and the classification bias does not apply. Due to 
this classification bias, the data obtained with the adaptive 
reward criterion are inconclusive as to whether the propor-
tion same-sign changes with the adaptive reward criterion 
was caused by the reward criterion or by participant behav-
iour deviating from random exploration. The proportion 
same-sign changes in the Fixed group however shows that 
some form of non-random exploration contributes to human 
reward-based motor learning.

In the Supplementary Materials, we consider three 
alternative exploration strategies that might increase the 
proportion same-sign changes according to the models 
implementing random exploration for reward-based motor 
learning, regardless of the reward criterion used. The first 
alternative strategy is sampling exploration from a bounded 
and uniform distribution, the second strategy is autocorre-
lated exploration, and the third strategy is a sweeping strat-
egy which increases the exploration in a constant direction 
and switches direction when the boundary of a search space 
is reached. Sampling from a bounded and uniform distribu-
tion did not increase the proportion same-sign changes from 
1/3 to 0.4, whereas the other two strategies did result in pro-
portions same-sign changes higher than 1/3 (Supplementary 
Material S4). It is unlikely however that motor exploration 
only involves these strategies. A problem with the autocor-
related and sweeping strategy is that when the reward cri-
terion is adapted to performance, exploring consistently in 
the wrong direction causes a gradual relaxing of the reward 
criterion, reinforcing exploration in the wrong direction. 
Moreover, the sweeping strategy can bring one towards the 
target but when one misses the target due to motor noise, 
exploration drifts performance away from the target if one 
consistently explores in the same direction. This problem 
could be resolved by adapting the variability due to explo-
ration in a more refined manner to the reward history. For 
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search space. Finally, we did not fit the models to the data 
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ing the whole model. Future studies might compare models 
including interdependence across trials to current models 
based on random exploration by fitting them to behavioural 
data. A recent study showed that parameters can be reliably 
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Conclusion

In conclusion, we show that when practicing with a fixed 
reward criterion, the proportion same-sign changes follow-
ing failure exceeded the proportion expected based on ran-
dom exploration. When practicing with an adaptive reward 
criterion, the proportion same-sign changes following fail-
ure could be predicted by low variability due to exploration. 
This was possibly due to the classification of failure trials 
by the adaptive reward criterion. While the learning with the 
fixed reward criterion can be achieved by a model imple-
menting random exploration that scales the variability due 
to exploration to a longer reward history than the previous 
trial only (Dhawale et al. 2019), the learning with the adap-
tive reward criterion was achieved by all models implement-
ing random exploration (Cashaback et al. 2019; Dhawale et 
al. 2019; Roth et al. 2023; Therrien et al. 2018). The results 
suggest that in addition to the scaling the amplitude of vari-
ability due to exploration, humans use a form of directed 
exploration, biased towards repeating the direction of 
exploration. This was especially clear when practicing with 
a fixed reward criterion. When practicing with an adaptive 
reward criterion, the proportion same-sign changes might be 
explained by a sampling bias in the reward criterion.
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